Science in China Series B: Chemistry

, Volume 43, Issue 2, pp 187–195 | Cite as

Molecular electronegativity in density functional theory(VIII)

Charge polarization modes in a closed system
  • Yang Zhongzhi 
  • Wang Changsheng 


Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the correspondingab initio method.


atom-bond electronegativity equalization model closed system softness matrix electron population normal mode bond charge polarization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mortier, W. J., Ghosh, S. K., Shankar, S., Electronegativity equalization method for the calculation of atomic charges in molecules, J. Am. Chem. Soc., 1986, 108: 4315.CrossRefGoogle Scholar
  2. 2.
    Park, J. M., Kwon, O. Y., No, K. T. et al., Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. IV. Application to hypervalent sulfur- and phosphorus-containing molecules, J. Comp. Chem., 1995, 16: 1011.CrossRefGoogle Scholar
  3. 3.
    Ghosh, S. K., Electronegativity, hardness and a semiempirical density functional theory of chemical binding, Inter. J. Quan. Chem., 1994, 49: 239.CrossRefGoogle Scholar
  4. 4.
    Yang, Z. -Z., Shen, E. -Z., Direct calculation of atomic charges in a molecule via electronegativity equalization principle, Science in China, Ser. B, 1995, 38: 521.Google Scholar
  5. 5.
    Yang, Z. -Z., Shen, E. -Z., Direct calculation of group electronegativity, Science in China, Ser. B, 1996, 39: 20.Google Scholar
  6. 6.
    York, D. M., Yang, W., A chemical potential equalization method for molecular simulations, J. Chem. Phys., 1996, 104: 159.CrossRefGoogle Scholar
  7. 7.
    Nalewajski, R. F., Korchowiec, J., Charge sensitivities of catalytic clusters: model (n-Ni) and (n-Ni)-CO systems, J. Mol. Catal., 1991, 68: 123.CrossRefGoogle Scholar
  8. 8.
    Baekelandt, B. G., Janssens, G. O. A., Toufar, H. et al., Mapping between electron population and vibrational normal modes within the charge sensitivity analysis, J. Phys. Chem., 1995, 99: 9784.CrossRefGoogle Scholar
  9. 9.
    Yang, Z. -Z., Wang, C. -S., Atom-bond electronegativity method, I. Calculation of the charge distribution in large molecules, J. Phys. Chem. A, 1997, 101: 6315.Google Scholar
  10. 10.
    Yang, Z. -Z., Wang, C. -S., Tang, A. -Q., Molecular electronegativity in density functional theory (VI), Science in China, Ser. B, 1998, 41(3): 331.CrossRefGoogle Scholar
  11. 11.
    Wang, C. -S., Yang, Z. -Z., Atom-bond electronegativity method, II. Lone-pair electron model, J. Chem. Phys., 1999, 110(13): 6189.CrossRefGoogle Scholar
  12. 12.
    Parr, R. G., Yang, W., Density Functional Theory of Atoms and Molecules, New York: Oxford Univ. Press, 1989.Google Scholar
  13. 13.
    Parr, R. G., Donnelly, R. A., Levy, R. A. et al., Electronegativity: density functional theory, J. Chem. Phys., 1978, 68: 3801.CrossRefGoogle Scholar
  14. 14.
    Dreizler, R. M., Gross, E. K. U., Density Functional Theory, Berlin-Heidelberg: Springer-Verlag, 1990.Google Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  1. 1.Department of ChemistryLiaoning Normal UniversityDalianChina
  2. 2.National Key Laboratory of Theoretical and Computational ChemistryJilin UniversityChangchunChina

Personalised recommendations