Advertisement

Metals and Materials International

, Volume 9, Issue 2, pp 215–219 | Cite as

An electrochemical approach to development of a method for accele strength evaluation of hard tissue replacement materials

  • Byung Jun Lee
  • Min Gun Kim
Article

Abstract

To develop a method of accelerating the strength evaluation of hard tissue replacement materials (Ti-6Al-4V alloy) with an electrochemical approach in the short term, corrosion tests were carried out on Ti-6Al-4V alloy) by means of applying a uniform current to a simulated physiological environment and the potental difference was scanned to check the variations in the resistance of the specimens. As a result, the corrosion behavior was monitored by scanning the potential difference and an empirical formula for controlling the corrosion behavior of the Ti-6Al-4V alloy in the simulated physiological environment was proposed.

Keywords

hard tissue replacement materials pitting damage corrosion fatigue simulating physiological environment accelerated laboratory corrosion testing method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Fontana,Corrosion Engineering, 3rd ed., Chap. 5, McGraw-Hill, New York (1986).Google Scholar
  2. 2.
    A. C. Fraker, A. W. Ruff, P. Sung, A. C. Van Orden and K. M. Speck,Titanium Alloys in Surgical Implants, ASTM STP 796, p. 206, American Society for Testing and Materials, Philadelphia (1983).CrossRefGoogle Scholar
  3. 3.
    B. P. Bannon and E. E. Mild,Titanium Alloys in Surgical Implants, ASTM STP 796, p. 7, American Society for Testing and Materials, Philadelphia (1983).CrossRefGoogle Scholar
  4. 4.
    J. L. Gilbert, C. A. Buckley and J. J. Jacobs,J. Biomed. Mater. Res. 27, 1533 (1995).CrossRefGoogle Scholar
  5. 5.
    J. S. Kawalec, S. A. Brown, J. H. Payer and K. MerrittJ. Biomed Mater. Res. 29, 867 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    R. M. Uraban, J. J. Jacobs, J. L. Gilbert and J. O. Galante,J. Bone and Joint Surgery A 76, 1345 (1994).Google Scholar
  7. 7.
    J. P. Collier, V. A. Surprenant, R. E. Jensen, M. B. Mayor, and H. P. Surprenant,J. Bone and Joint Surgery B 74, 511 (1992).Google Scholar
  8. 8.
    J. P. Coller, M. B. Mayor, R. E. Jensen, V. A. Surprenant, H. P. Surprenant, J. L. Mcnamara and L. Belec,Clinical Orthopaedics and Related Research 285, 129 (1992).Google Scholar
  9. 9.
    K. L. Markolf and H. C. Amstutz,J. Biomechanics 9, 73 (1976).CrossRefGoogle Scholar
  10. 10.
    R. S. M. Ling,Clinical Orthopaedics and Related Research 285, 73 (1992).PubMedGoogle Scholar
  11. 11.
    M. A. Imam, A. C. Fraker, J. S. Harris and C. M. Gilmore,Titanium Alloys in Surgical Implants, ASTM STP 796, p. 106, American Society for Testing and Materials, Philadelphia (1983).Google Scholar
  12. 12.
    H. Leckie and H. Uhlig,J. Electrochem. Soc. 113, 1262 (1966).CrossRefGoogle Scholar
  13. 13.
    Y. Murakami,Effects of Small Defects and Nonmetallic Inclusions, Chap. 4, Yokendo, Tokyo (1993).Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  1. 1.Cold Rolling Mill, Cold Rolling Department Kwangyang WorksPOSCOGwangyangKorea
  2. 2.Division of Mechanical and Mechatronics EngineeringKangwon National UniversityChuncheonKorea

Personalised recommendations