Metals and Materials International

, Volume 8, Issue 5, pp 443–447 | Cite as

Effects of solidification structure on fatigue crack initiation and fatigue strength in Al−Si−Mg cast alloys

  • Sang-Won Han
  • Ui-Jong Lee
  • Sug-Won Kim


Rotating-bending uniaxial fatigue tests and micro-fatigue crack initiation tests were carried out using a permanent mold cast (PMC) and semi-solid die cast (SDC) with Al−7%Si−0.35%Mg composition in order to examine the relationship between solidification structures and fatigue behaviors. The crack length was measured using a replication method. Fatigue strength was improved in SDC, which was almost consistent with the predicted fatigue strength using the size of Si particle cluster. Resistance to fatigue crack initiation and fatigue strength were improved in SDC owing to the finer Si cluster and to higher ultimate tensile strength. Fatigue crack in PMC was preferentially initiated at pores. For SDC, the fatigue crack was initiated at the Si particle/matrix interface, and then sucessively grew along eutectic cell boundaries.


semi-solid die cast fatigue strength prediction fatigue crack initiation eutectic cell boundary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Reinhart,ASTM Handbook 19, 813 (1996).Google Scholar
  2. 2.
    I. J. Polmear,Light Alloys, Metallurgy of the Light Metals, 2nd Ed., p. 144, Edward Arnold, London (1989).Google Scholar
  3. 3.
    J. Allison, J. Jones, M. Caton, and J. Boileau,Proc. of the 7th Int. Fatigue Congress: Fatigue 99 (eds. X. R. Wu and Z. G. Wang), vol. 3, p. 2021, Beijing, P.R. China (1999).Google Scholar
  4. 4.
    M. Kubota, Y. Ochi, and R. Shibata,Proc. 93rd Conf. of Jpn. Inst. Light Met., p. 307, Jpn. Inst. Light Met. (1999).Google Scholar
  5. 5.
    S. Kumai, S. Aoki, S. W. Han, and A. Sato,Mater. Trans JIM 40, 685 (1999).Google Scholar
  6. 6.
    K. Gall, N. Yark, M. Horstemeyer, D. L. Madowell, and J. Fan,Metall. Mater. Trans. A 30, 3079 (1999).CrossRefGoogle Scholar
  7. 7.
    K. Gall, N. Yark, M. Horstemeyer, D. L. Madowell, and J. Fan,Mech. Mater. 32, 265 (2000).CrossRefGoogle Scholar
  8. 8.
    Y. Kuroki, T. Tanaka, T. Sato, and A. Kamio,J. Jpn. Inst. Light Met. 50, 116 (2000).CrossRefGoogle Scholar
  9. 9.
    M. J. Couper, A. E. Neeson, and J. R. Griffiths,Fatigue Fract. Eng. Mater. Struct. 13, 213 (1990).CrossRefGoogle Scholar
  10. 10.
    J. C. Ting and F. V. Lawrence,Fatigue Fract. Eng. Mater. Struct. 16, 631 (1993).CrossRefGoogle Scholar
  11. 11.
    B. Skallerud, T. Iveland, and Harkegard,Eng. Fract. Mech. 44, 857 (1993).CrossRefGoogle Scholar
  12. 12.
    M. Kobayashi and T. Matsui,Trans. Jpn. Soc. Mech. Eng. A 62, 341 (1996).Google Scholar
  13. 13.
    Y. Murakami, M. Kobayashi, T. Makino, T. Toriyama, Y. Kurihara, S. Takasaki, and R. Ebara,Trans. Jpn. Soc. Mech. Eng. A 57, 2305 (1991).Google Scholar
  14. 14.
    E. J. Gumbel,Statistics of Extremes, p. 34, Columbia Univ. Press. (1957).Google Scholar
  15. 15.
    M. Kubota, Y. Ochi, A. Ishii, and S. Shibata,Trans. Jpn. Soc. Mech. Eng. A 61, 2342 (1995).Google Scholar
  16. 16.
    K. Shiozawa, Y. Tohda, and S. M. Sun,Fatigue Fract. Eng. Mater. Struct. 20, 237 (1997).CrossRefGoogle Scholar
  17. 17.
    S. W. Han, S. Kumai, and A. Sato,Mater. Sci. Eng. A 332, 56 (2002).CrossRefGoogle Scholar
  18. 18.
    J. Lankford,Fatigue Fract. Eng. Mater. Struct. 8, 161 (1985).CrossRefGoogle Scholar
  19. 19.
    J. Lankford,Fatigue of Eng. Mater. Struct. 5, 233 (1982).CrossRefGoogle Scholar
  20. 20.
    K. J. Miller,Fatigue of Eng. Mater. Struct. 5, 223 (1982).CrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Sang-Won Han
    • 1
  • Ui-Jong Lee
    • 1
  • Sug-Won Kim
    • 1
  1. 1.Division of Advanced Materials Engineering Research Center of Industrial TechnologyChonbuk National UniversityJeonjuKorea

Personalised recommendations