Metals and Materials International

, Volume 9, Issue 4, pp 345–350 | Cite as

Effects of filler and ethanol on mechanical properties of glass-like carbon

  • Yun-Soo Lim
  • Hee-Seok Kim
  • Ki-Sang Yoo
  • Jae Hyung Kim


The effects of filler and ethanol on the mechanical properties of glass-like carbon were studied. The specific gravities of glass-like carbons with the filler were higher than those of alcohol added glass-like carbons due to the formation of pores and bubbles as the alcohol was vaporized in the curing and polymerization stages. The ethanol added glass-like carbon samples also had lower bending strength than the filler added glass-like carbon samples after carbonization; a contrary result was observed after heat treatment at 2600°C. This was due to the pores that were made with ethanol which plays the role of pore former during carbonization. The fabricated glass-like carbons are quite brittle material. The shore hardness of the glass-like carbon was observed not to be affected by the addition of filler or ethanol, but increased a lot after carbonization.


glass-like carbon specific gravity bending strength shore hardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Nakamizo,Carbon 29, 757 (1991).CrossRefGoogle Scholar
  2. 2.
    D. B. Fishbach and M. E. Rorabaugh,Carbon 21, 429 (1983).CrossRefGoogle Scholar
  3. 3.
    K. Fukuyama, T. Nishizawa, and K. Nishikawa,Carbon 39, 1863 (2001).CrossRefGoogle Scholar
  4. 4.
    F. Rousseaux and D. Tchoubar,Carbon 15, 63 (1977).CrossRefGoogle Scholar
  5. 5.
    H. Honda, K. Kobayashi, and S. Sugawara,Carbon 6, 517 (1968).CrossRefGoogle Scholar
  6. 6.
    E. C. Botelho, N. Scherbakoff, and M. C. Rezende,Carbon 39, 45 (2001).CrossRefGoogle Scholar
  7. 7.
    D. B. Fischbach,Carbon 9, 193 (1971).CrossRefGoogle Scholar
  8. 8.
    W. J. Gary, W. C. Morgan, J. H. Cox, and E. M. Woodruff,Carbon 10, 236 (1972).CrossRefGoogle Scholar
  9. 9.
    K. Fukuyama, T. Nishizawa, and K. Nishikawa,Carbon 39, 2017 (2001).CrossRefGoogle Scholar
  10. 10.
    J. X. Zhao, R. C. Bradt, and P. L. Walker, Jr,Carbon 23, 15 (1985).CrossRefGoogle Scholar
  11. 11.
    A. Yoshida, Y. Kaburagi, and Y. Hishiyama,Carbon 29, 1107 (1991).CrossRefGoogle Scholar
  12. 12.
    H. J. Siebeneck, P. A. Urick, D. P. H. Hasselman, E. J. Minford, and R. C. Bradt,Carbon 15, 187 (1977).CrossRefGoogle Scholar
  13. 13.
    Z. Lausevic and G. M. Jenkins,Carbon 24, 651 (1986).CrossRefGoogle Scholar
  14. 14.
    A. Shindo and K. Izumino,Carbon 32, 1233 (1994).CrossRefGoogle Scholar
  15. 15.
    T. Kyotani, H. Yamada, N. Sonobe, and A. Tomita,Carbon 32, 627 (1994).CrossRefGoogle Scholar
  16. 16.
    E. Fitzer, W. Schaffer, and S. Yamada,Carbon 7, 643 (1969).CrossRefGoogle Scholar
  17. 17.
    A. Oya,Introduction to Carbon Technologies (eds., H. Marsh, E. A. Heintz, and F. Rodriguez-Reinoso), Universidad de Alicante, Secretariado de Publicaciones, Spain (1997).Google Scholar
  18. 18.
    E. Fitzer and W. Schaffer,Carbon 8, 353 (1970).CrossRefGoogle Scholar
  19. 19.
    Y. S. Lim, H. S. Kim, Y. J. Chung, M. S. Kim, and J. H. Kim,J. Kor. Ceram. Soc. 38, 643 (2001).Google Scholar
  20. 20.
    K. P. Constant, J. R. Lee, and Y. M. Chiang,J. Mater. Res. 11, 2338 (1996).CrossRefADSGoogle Scholar
  21. 21.
    I. M. Pickup, T. J. Mays, and B. McEnaney,Carbon 86, 4th Int. Carbon Conf., p. 240 (1986).Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Yun-Soo Lim
    • 1
  • Hee-Seok Kim
    • 1
  • Ki-Sang Yoo
    • 1
  • Jae Hyung Kim
    • 2
  1. 1.Department of Ceramic Engineering, College of EngineeringMyongji UniversityYonginKorea
  2. 2.Energy InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations