Metals and Materials International

, Volume 7, Issue 5, pp 471–477 | Cite as

Effects of change in growth mechanism due to Yttrium-addition in adhesion of alumina scale formed on Fe3Al alloy: Countercurrent diffusion modification model

  • Insoo Kim


The effects of Y-addition on the high-temperature oxidation of Fe3Al alloy were investigated in air at a temperature range of 800–1100°C. The reactive element enhanced the initial nucleation of the oxide scale and thus formed a fine-grained oxide. The grain refinement of the alumina scale due to the addition of yttrium changed the growth mechanism of the oxide from a countercurrent diffusion of Al and O to a predominantly inward oxygen diffusion, which led to the formation of pegs on the scale/alloy interface, the prevention of the formation of voids in the substrate, and a decrease in growth stress. The beneficial effects of the reactive element on oxide adhesion are explained by “countercurrent diffusion modification model” suggested in this study.


oxidation reactive elements Fe3Al adhesion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. B. Pfeil,U.K.Patent 450848 (1937).Google Scholar
  2. 2.
    G. Simkovich,Oxid. Met. 44, 501 (1995).CrossRefGoogle Scholar
  3. 3.
    K. Przybylski and G. J. Yurek,Rective Element Effect on High Temperature Oxidation After Fifty Tears (ed., W. E. King), p. 1, Trans. Tech. Pub. (1989).Google Scholar
  4. 4.
    M. J. Bennett, D. P. Moon and U. Harwell,The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, p. 111, Elsevier Applied Science, London and New York (1989).Google Scholar
  5. 5.
    K. L. Luthra and C. L. Briant,Oxid. Met. 26, 397 (1986).CrossRefGoogle Scholar
  6. 6.
    Y. Saito and T. Maruyma,Mater. Sci. Eng. 87, 275 (1987).CrossRefGoogle Scholar
  7. 7.
    F. H. Stott,Mater. Sci. Tech. 4, 431 (1988).Google Scholar
  8. 8.
    K. D. Vemon-Parry, C. R. M. Grovenor, N. Needham and T. English,Mater. Sci. Tech. 4, 461 (1988).Google Scholar
  9. 9.
    R. M. Cannon, W. H. Rhodes, and A. H. Heuer,J. Am. Ceram. Soc. 63, 46 (1980).CrossRefGoogle Scholar
  10. 10.
    T. A. Ramanarayanan, M. Raghavan and R. Petkovic-Luton,J. Electrochem. Soc. 131, 923 (1984).CrossRefGoogle Scholar
  11. 11.
    I. S. Kim,Ph. D Thesis, University of Utah, SLC (1999).Google Scholar
  12. 12.
    M. W. Brumm and H. J. Grabke,Corros. Sci. 34, 547 (1993).CrossRefGoogle Scholar
  13. 13.
    B. A. Pint,Oxid. Met. 48, 303 (1997).CrossRefGoogle Scholar
  14. 14.
    V. R. Howes,J. Electrochem. Soc. 116, 1286 (1969).CrossRefGoogle Scholar
  15. 15.
    J. D. Kuenzly and D. L. Douglas,Oxid. Met. 8, 139 (1974).CrossRefGoogle Scholar
  16. 16.
    E. W. A. Young and J. H. W. Dewit,Oxid. Met. 26, 351 (1986).CrossRefGoogle Scholar
  17. 17.
    C. H. Xu, W. Gao and H. Gong,Intermetallics 8, 769 (2000).CrossRefGoogle Scholar
  18. 18.
    B. A. Pint, J. R. Martin and L. W. Hobbs,Oxid. Met. 39, 167 (1993).CrossRefGoogle Scholar
  19. 19.
    B. A. Pint and L. W. Hobbs,Oxid. Met. 41, 203 (1994).CrossRefGoogle Scholar
  20. 20.
    K. P. R. Reddy, J. L. Smialek and A. R. Cooper,Oxid. Met. 17, 429 (1982).CrossRefGoogle Scholar
  21. 21.
    C. Mennicke, E. Schumann, M. Ruhle, R. J. Hussey, G. I. Sproule and M. J. Graham,Oxid. Met. 49, 455 (1998).CrossRefGoogle Scholar
  22. 22.
    G. B. Abderrazik, G. Moulin and A. M. Huntz,Solid State Ionics 22, 285 (1987).CrossRefGoogle Scholar
  23. 23.
    T. A. Ramanarayanan, M. Raghavan and R. Petkovic-Luton,Oxid. Met. 22, 83 (1984).CrossRefGoogle Scholar
  24. 24.
    F. A. Golightly, F. H. Stott and G. C. Wood,J. Electrochem. Soc. 126, 1035 (1970).CrossRefGoogle Scholar
  25. 25.
    N. B. Pilling and R. E. Bedworth,J. Inst. Met. 29, 529 (1923).Google Scholar
  26. 26.
    D. A. Jones,Principles and Prevention of Corrosion, p. 418, Macmillan, New York (1992).Google Scholar
  27. 27.
    F. A. Golightly, F. H. Stott and G. C. Wood,Oxid. Met. 10, 163 (1976).CrossRefGoogle Scholar
  28. 28.
    Y. Oishi and W. D. Kingery,Chem. Phys. 33, 480 (1960).ADSGoogle Scholar
  29. 29.
    J. F. Laurent and J. Benard,J. Phys. Chem. Solids 7, 218 (1958).CrossRefADSGoogle Scholar
  30. 30.
    J. F. Laurent and J. Benard,Compt. Rend 241, 1204 (1955).Google Scholar
  31. 31.
    M. T. Shim and W. J. More,J. Chem. Phys. 26, 802 (1957).CrossRefADSGoogle Scholar
  32. 32.
    W. J. Moore and E. L. Williams,Discussion Friday Soc. 28, 85 (1959).Google Scholar
  33. 33.
    L. Himmel, R. F. Mehl and C. E. Birchenall,J. Inst. Metals 5, 827 (1953).Google Scholar
  34. 34.
    J. Stringer, B. A. Wilcox and R. I. Jaffee,Oxid. Met. 11, 5 (1972).Google Scholar
  35. 35.
    G. B. Abderazik, G. Moulin and A. M. Huntz,J. Mater. Sci. 19, 3173 (1984).CrossRefADSGoogle Scholar
  36. 36.
    F. Wang,Oxid. Met. 48, 215 (1997).CrossRefGoogle Scholar
  37. 37.
    G. Y. Yurek, D. Eisen and A. Garratt-Reed,Metall. Trans. A 13, 473 (1982).CrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Insoo Kim
    • 1
  1. 1.Department of Metallurgical EngineeringDong-A UniversityBusanKorea

Personalised recommendations