Advertisement

Metals and Materials International

, Volume 7, Issue 5, pp 461–466 | Cite as

High temperature sulfidation and oxidation of sputter-deposited Nb−Al−Si coatings

  • Dong-Bok Lee
Article

Abstract

The sulfidation and oxidation behavior of amorphous 58Nb-38Al-4Si(at%) coating sputter-deposited with d.c. magnetron sputtering was studied between 700 and 900°C under 0.1 atm of pure S2(g) and 1 atm of air, respectively. The coating approximately followed the parabolic sulfidation and oxidation rate law, and displayed superior resistance to sulfidation and oxidation. The coating sulfidized to Al2S3 and NbS2 which protected the substrate. The coating oxidized to TiO2, AlNbO4 and κ-Al2O3 which acted as an oxidation barrier. The mechanisms of sulfidation and oxidation of the prepared coating are discussed.

Keywords

sulfidation oxidation coating niobium aluminum silicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kofstad,High Temperature Corrosion, p. 425, Elsevier Applied Science, London and New York (1988).Google Scholar
  2. 2.
    G. Wang, R. Carter and D. L. Douglass,Oxid. Met. 32, 273 (1989).CrossRefGoogle Scholar
  3. 3.
    F. Gesmundo, F. Viani and Y. Niu,Oxid. Met. 38, 465 (1992).CrossRefGoogle Scholar
  4. 4.
    N. Birks and G. H. Meier,Introduction to High Temperature Oxidation of Metals, p. 126, Edward Arnold, London (1983).Google Scholar
  5. 5.
    Z. Grzesik, K. Takahiro, S. Yamaguchi, K. Hashimoto and S. Mrowec,Corros. Sci. 37, 801 (1995).CrossRefGoogle Scholar
  6. 6.
    H. Habazaki, K. Takahiro, S. Yamaguchi, K. Hashimoto, J. Dabek, S. Mrowec and M. Danielewski,Mater. Sci. Eng. A 181, 1099 (1994).CrossRefGoogle Scholar
  7. 7.
    H. Mitsui, H. Habazaki, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto and S. Mrowec,Mater. Trans. JIM 37, 379 (1996).Google Scholar
  8. 8.
    H. Mitsui, H. Habazaki, K. Asami, K. Hashimoto and S. Mrowec,Corros. Sci. 38, 1431 (1996).CrossRefGoogle Scholar
  9. 9.
    H. Mitsui, H. Habazaki, K. Hashimoto and S. Mrowec,Corros. Sci. 39, 9 (1997).CrossRefGoogle Scholar
  10. 10.
    D. B. Lee, H. Mitsui, H. Habazaki, A. Kawashima and K. Hashimoto,Corros. Sci. 38, 2031 (1996).CrossRefGoogle Scholar
  11. 11.
    D. B. Lee, H. Habazaki, A. Kawashima and K. Hashimoto,Corros. Sci. 42, 721 (2000).CrossRefGoogle Scholar
  12. 12.
    G. Wang, R. Carter and D. L. Douglass,Oxid. Met. 32, 273 (1989).CrossRefGoogle Scholar
  13. 13.
    R. Klumpes, C. H. M. Maree, E. Schramm and J. H. W. de Wit,Oxidation of High-Temperature Intermetallics, p. 99, TMS, PA (1989).Google Scholar
  14. 14.
    O. Kubaschewski and B. E. Hopkins,J. Less-Common Met. 2, 172 (1960).CrossRefGoogle Scholar
  15. 15.
    Z. Grzesik, H. Mitsui, K. Asami, K. Hashimoto and S. Mrowec,Corros. Sci. 37, 1045 (1995).CrossRefGoogle Scholar
  16. 16.
    G. Petzow and G. Effenberg,Ternary Alloys, vol. 7, p. 382, VCH, NY (1993).Google Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Dong-Bok Lee
    • 1
  1. 1.Department of Advanced Materials EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations