Metals and Materials International

, Volume 9, Issue 3, pp 279–286 | Cite as

A phase field model for electromigration-induced surface evolution

  • Ji-Hee Kim
  • Pil-Ryung Cha
  • Dong-Hee Yeon
  • Jong-Kyu Yoon


In this study, a phase field model is presented to study the effects of electromigration on the surface evolution of single crystal Al metal interconnects. Two dimensional computer simulations are performed for the surface evolution of metal interconnects due to electromigration in various conditions, such as anisotropy in diffusivity, different initial void sizes, and different crystallographic directions compared to the direction of the ambient electric field. From the results of computer simulations, it may be seen that the types of anisotropy and the relative direction of the diffusivity are the decisive factors in motion and shape change. As the symmetry of anisotropy in diffusivity decreases, the void evolves into a more unstable shape. Moreover, the voids of the system with two-fold diffusion symmetry are most likely to evolve into slits when the crystallographic direction is toward a specific orientation compared to the direction of the ambient electric field.


electromigration phase field model surface diffusion diffusion anisotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Semiconductor Technology Roadmap (2000).Google Scholar
  2. 2.
    E. Arzt, O. Kraft, W. D. Nix, and J. E. Sanchez, Jr.,J. Appl. Phys. 76, 1563 (1994).CrossRefADSGoogle Scholar
  3. 3.
    Y. C. Joo and C. V. Thompson,Mater. Res. Soc. Symp. Proc. 309, 351 (1993).Google Scholar
  4. 4.
    J. R. Black,IEEE Trans. Electron Devices ED-16, 338 (1969).CrossRefGoogle Scholar
  5. 5.
    P. S. Ho and T. Kwok,Prog. Phys. 52, 301 (1989).CrossRefADSGoogle Scholar
  6. 6.
    Z. Suo, W. Wang, and M. Yang,Appl. Phys. Lett. 64, 1944 (1994).CrossRefADSGoogle Scholar
  7. 7.
    C. V. Thompson and H. Kahn,J. Electronic Mater. 22, 581 (1993).CrossRefADSGoogle Scholar
  8. 8.
    J. E. Sanchez, O. Kraft, and E. Arzt,Appl. Phys. Lett. 61, 3121 (1992).CrossRefADSGoogle Scholar
  9. 9.
    J. H. Rose,Appl. Phys. Lett. 61, 2170 (1992).CrossRefADSGoogle Scholar
  10. 10.
    O. Kraft and E. Arzt,Acta mater. 45, 1599 (1997).CrossRefGoogle Scholar
  11. 11.
    M. R. Gungor and D. Maroudas,Appl. Phys. Lett. 72, 3452 (1998).CrossRefADSGoogle Scholar
  12. 12.
    D. R. Fridline, and A. F. Bower,J. Appl. Phys. 85, 3168 (1999).CrossRefADSGoogle Scholar
  13. 13.
    R. T. Tung and R. Graham,Surf. Sci. 97, 73 (1980).CrossRefADSGoogle Scholar
  14. 14.
    J. W. Cahn,J. Chem. Phys. 42, 93 (1965).CrossRefADSGoogle Scholar
  15. 15.
    M. Copetti and C. Elliott,Mater. Sci. Tech. 6, 273 (1990).Google Scholar
  16. 16.
    A. Wheeler, W. Boettinger, and W. McFadden,Phys. Rev. A 45, 7424 (1992).PubMedCrossRefADSGoogle Scholar
  17. 17.
    P. R. Cha, D. H. Yeon, and J. K. Yoon,Acta mater. 49, 3295 (2001).CrossRefGoogle Scholar
  18. 18.
    E. Fried and M. Gurtin,Physica D 72, 287 (1994).MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    M. Mahadevan and R. M. Bradley,Phys. Rev. B 59, 11037 (1999).CrossRefADSGoogle Scholar
  20. 20.
    M. Mahadevan and R. M. Bradley,Physica D 126, 201 (1999).CrossRefADSGoogle Scholar
  21. 21.
    D. N. Bhate, A. F. Bower, and A. Kumar,J. Mech. Phys. Solids 50, 2057 (2002).MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Ji-Hee Kim
    • 1
  • Pil-Ryung Cha
    • 1
  • Dong-Hee Yeon
    • 1
  • Jong-Kyu Yoon
    • 1
  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations