Advertisement

Metals and Materials International

, Volume 7, Issue 3, pp 233–240 | Cite as

Unified viscoplastic models for low cycle fatique behavior of Waspaloy

  • Jong-Taek Yeom
  • S. J. Williams
  • In-Soo Kim
  • Nho-Kwang Park
Article

Abstract

The deformation behavior of Waspaloy during strain-controlled fatigue tests and creep tests is investigated based on the Chaboche viscoplastic model. Material parameters were determined using the least square fit to uniaxial strain-controlled low-cycle fatique and creep test results. A standard viscoplastic model using nonlinear kinematic and isotropic hardening rules gave a good description for the cyclic hardening or softening observed in symmetric low-cycle fatigue tests, but the application of the deformation model to asymmetric strain conditions resulted in a large overestimation of the mean-stress relaxation. Two modified models are presented as solutions for the overestimation of stress relaxation. A combined nonlinear and linear kinematic hardening rule (NLK+LK model) and a nonlinear kinematic hardening rule with a threshold (2-NLK-TH model) are proposed and their applications are discussed.

Keywords

unified viscoplastic model low-cycle fatigue NLK+LK model 2-NLK-TH model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Mroz,J. Mech. Phys. Solids 15, 163 (1967).CrossRefADSGoogle Scholar
  2. 2.
    Y. F. Dafailas and E. P. Popov,Acta Mech. 21, 173 (1975).CrossRefGoogle Scholar
  3. 3.
    D. N. Robinson, C. E. Pugh and J. M. Corum,ORNL Report 766027 (1976).Google Scholar
  4. 4.
    R. D. Kawai and Y. Ohashi,Constitutive Laws for Engineering Materials: Theory and Applications (eds., C. S. Desai, E. Krempl, P. D. Kiousis and T. Kundu), Elsevier, New York (1987).Google Scholar
  5. 5.
    K. P. Walker,Final Report NASA CR-165533 (1981).Google Scholar
  6. 6.
    J. L. Chaboche,Int. J. Plasticity 5, 247 (1989).CrossRefMATHGoogle Scholar
  7. 7.
    P. Rodriguez and K. Rao,Prog. Mater. Sci. 37, 403 (1993).CrossRefGoogle Scholar
  8. 8.
    J. L. Chaboche,Unified Constitutive Laws of Plastic Deformation (eds., Krauss & Krauss), Academic Press Inc. (1996).Google Scholar
  9. 9.
    J. L. Chaboche, G. Rousselier,J. of Pressure Vessel Tech. ASME 105, 153 (1983).CrossRefGoogle Scholar
  10. 10.
    J. L. Chaboche,Constitutive Laws for Engineering Materials: Theory and Applications (eds., C. S. Desai, E. Krempl, P. D. Kiousis and T. Kundu), Elsevier, New York (1987).Google Scholar
  11. 11.
    J. L. Chaboche,Int. J. Plasticity 2, 149 (1986).CrossRefMATHGoogle Scholar
  12. 12.
    P. J. Amstrong and C. O. Frederick,C.E.G.B. Report RD/B/ N 731, Berkeley Nuclear Laboratories (1966).Google Scholar
  13. 13.
    I. W. Goodall, R. hales and D. J. Walters,IUTAM Symp. Leicester, Springer-Verlag (1980).Google Scholar
  14. 14.
    R. M. Goldhoff,Advances in Creep Design (eds., A. I. Smith and A. M. Nicolson), Applied Science Publishers Ltd., London (1971).Google Scholar
  15. 15.
    J. L. Chaboche and D. Nouailhas,J. Eng. Mater. Tech. ASME 111, 384 (1989).CrossRefGoogle Scholar
  16. 16.
    J. Lemaitre and J. L. Chaboche,Mechanics of Solid Materials, Cambridge Univ. Press, Cambridge (1990).MATHGoogle Scholar
  17. 17.
    J. L. Chaboche,Rech. Aérosp. 4, 49 (1989).Google Scholar
  18. 18.
    J. L. Chaboche, D. Nouailhas, D. Pacou and P. Paulmier,European J. of Mechanics 10, 101 (1991).Google Scholar
  19. 19.
    J. L. Chaboche and G. Cailletaud,Computers & Structures 23, 23 (1986).CrossRefGoogle Scholar
  20. 20.
    J. L. Chaboche,Int. J. Plasticity 7, 661 (1991).CrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Jong-Taek Yeom
    • 1
  • S. J. Williams
    • 2
  • In-Soo Kim
    • 1
  • Nho-Kwang Park
    • 1
  1. 1.Materials Processing DepartmentKorea Institute of Machinery and MaterialsChangwonKorea
  2. 2.Rolls-Royce PLCDerbyUK

Personalised recommendations