Metals and Materials International

, Volume 7, Issue 3, pp 187–190 | Cite as

Precipitation of the icosahedral phase in amorphous Zr65Cu17.5−xAl7.5Ni10Agx (x=0,2.5, 5, 7.5 and 10) alloys

  • J. K. Lee
  • S. H. Kim
  • W. T. Kim
  • D. H. Kim


An amorphous phase in Zr65Al7.5Cu17.5Ni10 crystallizes via co-precipitation of the I-phase and NiZr2 phase in the first crystallization step, followed by decomposition of the I-phase into the CuZr2 and NiZr2 phases. The NiZr2 phase transforms to a stable Zr6NiAl2 phase at a high temperature. The alloys containing Ag crystallize via a two-step process: firstly, the I-phase nucleates homogeneously and grows in an amorphous matrix; secondly, the quasicrystal and remaining amorphous phase transforms into the stable CuZr2 and Zr6NiAl2 phases. With increasing Ag, the I-phase becomes more thermally stable and the grain size in the I-phase decreases due to increased frequency of homogeneous nucleation. The quasi-lattice constant of the I-phase decreases with increasing Ag content.


amorphous crystallization icosahedral quasicrystal zirconium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Poon, A. J. Drehman and K. R. Lawless,Phys. Rev. Lett.,55, 2324 (1985).PubMedCrossRefADSGoogle Scholar
  2. 2.
    Y. Chen, S. J. Poon and G. J. Shiflet,Phys. Rev. B. 34, 3516 (1986).CrossRefADSGoogle Scholar
  3. 3.
    A. P. Tsai, A. Inoue, Y. Bizen and T. Masumoto,Acta metall. 37, 1443 (1989).CrossRefGoogle Scholar
  4. 4.
    J. C. Holzer and K. F. Kelton,Acta metall.,39, 1833 (1991).CrossRefGoogle Scholar
  5. 5.
    V. V. Molokanov and V. N. Chebotnikov,J. Non-Cryst. Solids. 117/118, 789 (1990).CrossRefGoogle Scholar
  6. 6.
    U. Koster, J. Meinhardt, S. Roos and H. Liebert,Appl. Phys. Lett. 69, 179 (1996).CrossRefADSGoogle Scholar
  7. 7.
    L. Q. Xing, J. Eckert, W. Loser and L. Schultz,Appl. Phys. Lett. 74, 664 (1999).CrossRefADSGoogle Scholar
  8. 8.
    L. Q. Xing, J. Eckert, W. Loser and L. Schultz,Appl. Phys. Lett. 73, 2110 (1998).CrossRefADSGoogle Scholar
  9. 9.
    A. Inoue, T. Zhang, J. Saida, M. Matsuashita, M. W. Chen and T. Sakurai,Mater. Trans. JIM 40, 1181 (1999).Google Scholar
  10. 10.
    J. K. Lee, G. Choi, W. T. Kim and D. H. Kim,Appl. Phys. Lett. 77, 978 (2000).CrossRefADSGoogle Scholar
  11. 11.
    J. K. Lee, G. Choi, W. T. Kim and D. H. Kim,J. Mater. Res. 16, 1311 (2001).CrossRefADSGoogle Scholar
  12. 12.
    J. K. Lee, W. T. Kim and D. H. Kim,J. Metastable and Nanocrystalline Mater.,10, 101 (2001).CrossRefGoogle Scholar
  13. 13.
    J. Eckert, N. Mattern, M. Zinkevitch and M. Seidel,Mater: Trans. JIM 39, 623 (1988).Google Scholar
  14. 14.
    M. Matsushita, J. Saida, T. Zhang, A. Inoue, M. W. Chen and T. Sakurai,Phil. Mag. Lett.,80, 79 (2000).CrossRefADSGoogle Scholar
  15. 15.
    U. Koster, J. Meinhardt, S. Roos and R. Busch,Mater. Sci. Eng. A,226–228, 995 (1997).Google Scholar
  16. 16.
    S. Sachdev and D. R. Nelson,Phys. Rev. B 32, 4592 (1985).CrossRefADSGoogle Scholar
  17. 17.
    J. Saida, M. Matsushita and A. Inoue,Appl. Phys. Lett. 77, 73 (2000).CrossRefADSGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • J. K. Lee
    • 1
  • S. H. Kim
    • 1
  • W. T. Kim
    • 2
  • D. H. Kim
    • 1
  1. 1.Center for Noncrystalline Materials Department of Metallurgical EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of PhysicsChongju UniversityChongjuKorea

Personalised recommendations