Advertisement

The Mathematical Intelligencer

, Volume 6, Issue 4, pp 71–78 | Cite as

Old Intelligencer

Article

Keywords

Variable Quantity Omnes Dira Physical Paper Fonctions Analytique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernoulli, Joh. (1968)OPERA OMNIA II, Hildesheim: G. Olms Verlagsbuchhandl.Google Scholar
  2. 2.
    Boole, G.An investigation of THE LAWS OF THOUGHT … , New York: Dover Publ.Google Scholar
  3. 3.
    Bourbaki, N. (1939)Théorie des ensembles (Fascicule de résultats). Paris: HermannGoogle Scholar
  4. 4.
    Bourbaki, N. (1968)Theory of Sets (A translation of Théorie des ensembles), Paris: HermannGoogle Scholar
  5. 5.
    Carey, F. S. (1917)Infinitesimal Calculus I New York: Longmans, Green and Co.Google Scholar
  6. 6.
    Cauchy, A. (1823)Résumé des leçons … sur le calcul infinitésimal Oeuvres complètes, Ser. 2, Vol. 4, Paris: Gauthier-VillarsGoogle Scholar
  7. 7.
    Dedekind, R. (1965)Was sind und was sollen die Zahlen? Braunschweig: Vieweg-VerlagCrossRefGoogle Scholar
  8. 8.
    Dirichlet, G. L. (1969) Überdie Darstellung ganz willkürlicherFunctionen durch Sinus- und Cosinusreihen., G. Lejeune Dirichlet’s Werke, New York: Chelsea Publ. Co.Google Scholar
  9. 9.
    Euler, L. (1922)Introductio in analysin infinitorum, OPERA OMNIA, Ser. I, Vol. VIII, Leipzig und Berlin: Teubner VerlagGoogle Scholar
  10. 10.
    Euler, L. (1908)Institutiones calculi differentialis, OPERA OMNIA, Ser. I, Vol. X, Leipzig und Berlin: Teubner VerlagGoogle Scholar
  11. 11.
    Fourier, J. B. L. (1888)Théorie analytique de la chaleur, Oeuvres de Fourier, Paris: Gauthier-Villars et FilsGoogle Scholar
  12. 12.
    Fourier, J. B. L (1955)The analytical theory of heat (Translation by A. Freeman), New York: Dover Publ.Google Scholar
  13. 13.
    Frege, G. (1964)Begriffsschrift und andere Aufsätze, Hildesheim: G. Olms Verlagsbuchhandl.Google Scholar
  14. 14.
    Goursat, E. (1923)Cours d’analyse mathématique I, Paris: Gauthier-VillarsMATHGoogle Scholar
  15. 15.
    Hankel, H. (1882) Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen,Math. Ann. 20, 63–112CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Hardy, G. H. (1908)A course of pure mathematics, Cambridge: Cambridge Univ. PressMATHGoogle Scholar
  17. 17.
    Lagrange, J. L. (1973)Theorie des fonctions analytique, Oeuvres, Hildesheim: G. Olms Verlagsbuchhandl.Google Scholar
  18. 18.
    Peano, G. (1911) Sulla definizione di funzione, Atti Accad. naz. Lincei, Rend.,Cl. sci. fis. mat. nat.20, 3–5MATHGoogle Scholar
  19. 19.
    Riemann, B. (1892)Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, MATHEMATISCHE WERKE und wissenschaftlicher Nachlass, Leipzig: Teubner VerlagGoogle Scholar
  20. 20.
    Stokes, G. G. (1966) On the critical values of the sums of periodic series.Mathematical and Physical Papers, Vol. I, New York: Johnson Reprint Corp.Google Scholar
  21. 21.
    Stokes, G. G. (1966) On a difficulty in the theory of sound.Mathematical and Physical Papers, Vol. II, New York: Johnson Reprint Corp.Google Scholar
  22. 22.
    Tannery, J. (1904)Introduction a la Théorie des Fonctions d’une Variable, Paris: HermannMATHGoogle Scholar
  23. 23.
    van Heijenoort, J. (1967)From Frege to Gödel—A Source Book in Mathematical Logic, 1879–1931, Cambridge, Mass.: Harvard Univ. PressMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1984

Personalised recommendations