The Mathematical Intelligencer

, Volume 16, Issue 1, pp 63–75 | Cite as


  • Thomas S. Angeli
  • T. M. Mills
  • Harold L. Dorwart
  • John C. Baez


Integral Equation Time Reversal Differential Inclusion Volterra Operator Exact Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Aubin and A. Cellina,Differential Inclusions, Springer- Verlag, Berlin, Heidelberg, New York, 1984.CrossRefMATHGoogle Scholar
  2. 2.
    A. Beer,Einleitung in die Electrostatik, die Lehre vom Magnetismus und die Elektrodynamik, Vieweg, Braunschweig, 1865.Google Scholar
  3. 3.
    K. Deimling,Multivalued Differential Equations, de Gruyter, Berlin, New York, 1992.CrossRefMATHGoogle Scholar
  4. 4.
    L. M. Delves and J. L. Mohamed,Computational Methods for Integral Equations, Cambridge University Press, Cambridge, New York, 1985.CrossRefMATHGoogle Scholar
  5. 5.
    R. Gorenflo,Abel Integral Equations: Analysis and Applications, Springer-Verlag, Berlin, New York, 1991.MATHGoogle Scholar
  6. 6.
    H. Heuser,Funktionalanalysis, Teubner, Stuttgart, 1975.MATHGoogle Scholar
  7. 7.
    H. Hochstadt,Integral Equations, Wiley, New York, 1973.MATHGoogle Scholar
  8. 8.
    K. Jörgens,Linear Integral Operators (G. Roach, trans.), Pitman, London, 1982.Google Scholar
  9. 9.
    M. A. Krasnosel’skii,Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, New York, 1964.Google Scholar
  10. 10.
    M. A. Krasnosel’skii and A. V. Pokrovskii,Systems with Hysteresis, Springer-Verlag, Berlin, Heidelberg, New York, 1989.CrossRefMATHGoogle Scholar
  11. 11.
    C. D. Levermore, Training a new generation of applied math faculty,SIAM News 25(6) (1992), 17.Google Scholar
  12. 12.
    E. J. McShane, A navigation problem in the calculus of variations,Amer. J. Math. 59 (1937), 327–334.CrossRefMathSciNetGoogle Scholar
  13. 13.
    N. I. Muskhelishvili,Singular Integral Equations;Boundary Problems of Function Theory and Their Application to Mathematical Physics, P. Noordhoff, Gronigen, The Netherlands, 1953.Google Scholar
  14. 14.
    M. N. Oguztöreli,Time-Lag Control Systems, Academic Press, New York, London, 1966.MATHGoogle Scholar
  15. 15.
    I. Sloan, B. Burn, and N. Datyner, A new approach to the numerical solution of integral equations,J. Comp. Physics 18 (1975), 92–103.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    F. Smithies,Integral Equations, Cambridge University Press, Cambridge, 1958.MATHGoogle Scholar
  17. 17.
    L. Tonelli, Sulle equazioni funzionali di Volterra,Bull. Calcuta Math. Soc. 20 (1929), 31–48;Opere Scelti 4, 198-212, Edizioni Cremonese, Rome, 1960.Google Scholar
  18. 18.
    F. G. Tricomi,Integral Equations, Interscience Publishers, New York, 1957.MATHGoogle Scholar
  19. 19.
    V. Volterra,Theory of Functionals and of Integral and Integro- Differential Equations, Dover, New York, 1959.MATHGoogle Scholar
  20. 20.
    J. Warga,Optimal Control of Differential and Functional Equations, Academic Press, New York, London, 1972.MATHGoogle Scholar


  1. 1.
    James Robert Case, Extensions and Generalizations of Jackson’s Theorem, Ph.D. Dissertation, Syracuse University, 1970.Google Scholar
  2. 2.
    Dunham Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegbenen Grades und trigonometrische Summen gegebener Ordnung, Gekrönte Preisschrift und Inaugural— Dissertation, Göttingen University, 1911.Google Scholar
  3. 3.
    William L. Hart, Dunham Jackson 1888-1946,Bull. Amer. Math. Soc. 54 (1948), 847–860.CrossRefMATHMathSciNetGoogle Scholar


  1. 1.
    Robert G. Sachs,The Physics of Time Reversal, Chicago, University of Chicago Press (1987).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1994

Authors and Affiliations

  • Thomas S. Angeli
    • 1
  • T. M. Mills
    • 2
  • Harold L. Dorwart
    • 3
  • John C. Baez
    • 4
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of MathematicsLa Trobe University College of Northern VictoriaBendigoAustralia
  3. 3.SalisburyUSA
  4. 4.Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations