Advertisement

The Mathematical Intelligencer

, Volume 5, Issue 3, pp 34–38 | Cite as

Sphere packing

  • François Sigrist
Article

Keywords

Sphere Packing Lattice Packing Integral Lattice Random Close Packing Golay Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. Best (1979) Optimal codes. Math. Cent. Tracts Amst.106, 119–140Google Scholar
  2. H. S. M. Coxeter (1961, 1969) Introduction to Geometry. New York: John WileyMATHGoogle Scholar
  3. H. S. M. Coxeter, L. Few, and C. A. Rogers (1959) Covering space with equal spheres. Mathematika6, 147–157CrossRefMATHMathSciNetGoogle Scholar
  4. M. J. E. Golay (1949) Notes on digital coding. Proc. Inst. Radio Eng.37, 657Google Scholar
  5. D. Husemoller and J. Milnor (1973) Symmetric Bilinear Forms. Berlin-Heidelberg-New York: Springer-VerlagMATHGoogle Scholar
  6. J. Leech (1956) The problem of the thirteen spheres. Math. Gaz.40, 22–23CrossRefMATHMathSciNetGoogle Scholar
  7. J. Leech (1964) Some sphere packings in higher space. Can. J. Math.16, 657–682CrossRefMATHMathSciNetGoogle Scholar
  8. J. Leech and N. J. A. Sloane (1970) New sphere packings in dimensions 9-15. Bull. Am. Math. Soc.76, 1006–1010CrossRefMATHMathSciNetGoogle Scholar
  9. J. Milnor (1976) Hilbert’s problem 18: On crystallographic groups, fundamental domains, and on sphere packing Proc. Symp. Pure Math.28, 491–506CrossRefMathSciNetGoogle Scholar
  10. C. A. Rogers (1958) The packing of equal spheres. Proc. London Math. Soc. (3)8, 609–620CrossRefMATHMathSciNetGoogle Scholar
  11. C. A. Rogers (1964) Packing and Covering. Cambridge: Cambridge University PressMATHGoogle Scholar
  12. W. Scharlau (1977) A historical introduction to the theory of integral quadratic forms. Quadratic forms. Queen’s Papers in Pure and Applied Mathematics 46. Kingston, Canada: Queen’s University. 284–339Google Scholar
  13. K. Schutte and B. L. van der Waerden (1953) Das Problem der dreizehn Kugeln, Math. Ann.125, 325–334CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1983

Authors and Affiliations

  • François Sigrist
    • 1
  1. 1.Institut de MathématiquesUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations