Advertisement

Metals and Materials

, Volume 6, Issue 2, pp 151–154 | Cite as

The effect of pulverised coal injection in blast furnace using computer simulation technique

  • P. L. M. Wong
  • M. J. Kim
  • H. S. Kim
Article

Abstract

A computer model simulates the effect of different types of coals on blast furnace operations. In this study, two kinds of programs, CHEMIX and ESTIMA as parts of a thermochemistry package known as THERMOCHEMISTRY were used for checking the adiabatic flame temperature. Results showed that the adiabatic temperature decreased considerably as the pulverized coal injection (PCI) rate increased, with the rate of decrease largely dependent on the chemical properties of the coal-mainly the carbon content and calorific value. The coal with the least carbon content has the least effect on the flame temperature. However, the coal/coke replacement ratio is very low. PCI increases the rate of generation of the reducing gases, namely CO(g) and H2(g), which depend largely on the chemical properties of coal. The results suggest that a simple calculation using computing programs may be useful for determining the suitability of a coal for injection in blast furnaces.

Key words

thermochemistry blast furnace pulverized coal injection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Chatterjee,Steel Times Int. 19, 31 (1995).Google Scholar
  2. 2.
    J. W. Han, J. K. Chung and T. D. Kim,J. Kor. Inst. Met. & Mater. 204, 32 (1994).Google Scholar
  3. 3.
    A. Maki, A. Sokai, N. Takagaki, K. Mori, T. Ariyama, M. Sato and R. Murai,ISIJ Int. 36, 650 (1996).CrossRefGoogle Scholar
  4. 4.
    C. Yamagata, S. Suyama, S. Horisaka, K. Takatani, Y. Kajiwara, S. Komatsu, H. Shibuta and Y. Aminaga,ISIJ Int. 32, 725(1992).CrossRefGoogle Scholar
  5. 5.
    H. Ueno, K. Yamaguchi and K. Tamura,ISIJ Int. 33, 640 (1993).CrossRefGoogle Scholar
  6. 6.
    K. Yamaguchi, H. Ueno and K. Tamura,ISIJ Int. 32, 716 (1992).CrossRefGoogle Scholar
  7. 7.
    J. M. Burgess,Progress Energy and Combustion Science 11, 61 (1985).CrossRefGoogle Scholar
  8. 8.
    A. Poos and N. Ponghis, 1990Ironmaking Conference Proceedings, p. 443 (1990).Google Scholar
  9. 9.
    J. K. Chung and N. S. Hur,ISIJ Int. 39, 119 (1997).CrossRefGoogle Scholar
  10. 10.
    J. M. Burgess, D. B. Cameron, C. J. C. Clark and P. H. Scaife,Coal Power ’87,The Australian Annual Conference, p. 171, Newcastle, Australia (1987).Google Scholar
  11. 11.
    A. G. Turnbull,CALPHAD 7, 137 (1983).CrossRefGoogle Scholar
  12. 12.
    G. Eriksson,Chemica Scripta 8, 100 (1975).Google Scholar
  13. 13.
    A. Davies, T. Tran and D. Young,Hydrometallurgy 32, 143 (1983).CrossRefGoogle Scholar
  14. 14.
    T. W. Cheng, A. C. Partridge, T. Tran and P. L. M. Wong,Minerals Eng. 7, 1085 (1994).CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • P. L. M. Wong
    • 1
  • M. J. Kim
    • 2
  • H. S. Kim
    • 3
  1. 1.School of Materials Science and EngineeringThe University of New South Wales Sydney 2052Australia
  2. 2.Department of Mineral and Energy Resources EngineeringChonnam National University 300 Yongbong-dongBuk-ku, Kwangjoo
  3. 3.Department of Materials ScienceMetallurgical Engineering Sunchon National University

Personalised recommendations