Advertisement

Metals and Materials

, Volume 6, Issue 1, pp 1–5 | Cite as

Dislocation movement around an inclusion during plastically-accommodated creep at high temperatures

  • Eiichi Sato
  • Kazuhiko Kuribayashi
Article

Abstract

Plastically accommodated creep in an inclusion bearing material (particle- or discontinuous fiber-reinforced metal matrix composite) without any interfacial relaxation mechanisms has been examined. For a material with an elastic-viscoplastic matrix, the non-uniform strain rate in steady state creep is derived using Eshelby’s solution for elastic strain outside an inclusion. The obtained creep strain increment is impotent and does not generate any additional internal stress. During this creep deformation, a dislocation comes in from one direction and goes out in another direction, so that no dislocation nor internal stress but a heterogeneous plastic strain remains in the material. The concrete trajectory of the dislocations climbing over a cylindrical inclusion is calculated and illustrated.

Key words

plastic accommodation dislocation creep metal matrix composite dislocation climb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Hashin,Mechanics of Composite Materials (eds., F. W. Wendt, H. Loebowitz and N. Perrone), p. 201, Pergamon, Oxford (1967).Google Scholar
  2. 2.
    Y. Li and T. G. Langdon,Mater. Sci. Tech. 15, 357 (1999).Google Scholar
  3. 3.
    T. Morimoto, T. Yamaoka, H. Lilholt and M. Taya,Trans. ASME 110, 70 (1988).Google Scholar
  4. 4.
    A. Dlouhy, G. Eggeler and N. Merk,Acta mater. 43, 535 (1995).CrossRefGoogle Scholar
  5. 5.
    K. Tanaka and T. Mori,Acta metall. 18, 931 (1970).CrossRefGoogle Scholar
  6. 6.
    L. M. Brown and W. M. Stobbs,Phil. Mag. 23, 1185 (1971).CrossRefADSGoogle Scholar
  7. 7.
    R. C. Koeller and R. Raj,Acta metall. mater. 26, 1551 (1978).CrossRefGoogle Scholar
  8. 8.
    T. Mori, T. Okabe and T. Mura,Acta metall. mater. 28, 319 (1980).CrossRefGoogle Scholar
  9. 9.
    D. J. Srolovitz, R. A. P. Luton and M. J. Luton,Phil. Mag. A48, 795 (1983).ADSGoogle Scholar
  10. 10.
    A. Kelly and K. N. Street,Proc. Roy. Soc. Lond. A328, 283 (1972).ADSGoogle Scholar
  11. 11.
    B. L. Lee and M. E. Mear,J. Mech. Phys. Solids 39, 627 (1991).CrossRefADSGoogle Scholar
  12. 12.
    T. L. Dragone and W.D. Nix,Acta metall. mater. 38, 1941 (1990).CrossRefGoogle Scholar
  13. 13.
    T. Mori, J. H. Huang and M. Taya,Acta mater. 45, 429 (1997).CrossRefGoogle Scholar
  14. 14.
    E. Sato, T. Ookawara, K. Kuribayashi, and S. Kodama,Acta metall. mater. 46, 4153 (1998).Google Scholar
  15. 15.
    J. D. Eshelby,Proc. Roy. Soc. A252, 561 (1959).ADSMathSciNetGoogle Scholar
  16. 16.
    J. D. Eshelby,Proc. Roy. Soc. A241, 376 (1957).ADSMathSciNetGoogle Scholar
  17. 17.
    K. Tanaka and T. Mori,J. Elasticity 2, 199 (1972).CrossRefGoogle Scholar
  18. 18.
    R. Furuhashi and T. Mura,J. Elasticity 9, 263 (1979).CrossRefGoogle Scholar
  19. 19.
    J. F. Nye,Acta metall. 1, 153 (1953).CrossRefGoogle Scholar
  20. 20.
    T. Mura,Proc. IUTAM Symp. Mechanics of Generalized Continua (ed., E. Kroner), p.269, Springer (1968).Google Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • Eiichi Sato
    • 1
  • Kazuhiko Kuribayashi
    • 1
  1. 1.The Institute of Space and Astronautical ScienceKanagawaJapan

Personalised recommendations