Journal of Bone and Mineral Metabolism

, Volume 23, Supplement 1, pp 122–131 | Cite as

Application of micro-ct assessment of 3-d bone microstructure in preclinical and clinical studies

  • Yebin Jiang
  • Jenny Zhao
  • Er-Yuan Liao
  • Ru-Chun Dai
  • Xian-Ping Wu
  • Harry K. Genant
Invited paper


As the mechanical competence of trabecular bone is a function of its apparent density and 3-D distribution, assessment of 3-D trabecular structural characteristics may improve our ability to understand the pathophysiology of osteoporosis, to test the efficacy of pharmaceutical intervention, and to estimate bone biomechanical properties. We have studied ovariectomy-induced osteopenia in rats and its treatment with agents such as estrogen and sodium fluoride. We have demonstrated that 3-D micro-computed tomography (µCT) can directly quantify mouse trabecular and cortical bone structure with an isotropic resolution of 6 µm3. µCT is also useful for studying osteoporosis in mice and phenotypes of mice with gene manipulation, such as SHIP-knockout mice, which are severely osteoporotic due to increased numbers of hyperresorptive osteoclasts, PTHrP heterozygous-null mice, and mice with Zmpste24 deficiency. µCT can quantify osteogenesis in mouse Ilizarov leg-lengthening procedures, osteoconduction in a rat cranial defect model, and structural changes in arthritic rabbits, rats, and mice. In clinical studies, we evaluated longitudinal changes in the iliac crests. Paired bone biopsies from the same premenopausal and postmenopausal women showed the changes in 3-D trabecular structure, such as decreased trabecular thickness, shifting of trabecular model from platelike structure to rodlike structure, and decreased degree of anisotropy were remarkable. Treatment with PTH in postmenopausal women with osteoporosis significantly improved trabecular morphology with a shift toward a more platelike structure, increased trabecular connectivity density, and increased cortical thickness. Paired bone biopsy specimens from the iliac crest in postmenopausal women with osteoporosis before and an average of 2 years after beginning of estrogen replacement therapy demonstrated that posttreatment biopsies showed a significant change in the ratio of plates to rods and statistically insignificant changes in other 3-D trabecular parameters. Thus, µCT can characterize 3-D structure of various animal models, and the longitudinal changes in 3-D bone microarchitectural integrity that deteriorates in the transmenopausal period, is preserved with HRT, and is improved with PTH treatment in postmenopausal women.

Key words

Osteoporosis 3-D microstructure Estrogen PTH Human Rat Mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jiang Y, Zhao J, Genant HK (2002) Macro and micro imaging of bone architecture. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology, 2nd edn. Academic. San Diego, pp 1599–1623Google Scholar
  2. 2.
    Jiang Y, Zhao J, Geusens P, Liao EY, Adriaensens P, Gelan J, Azria M, Boonen S, Caulin F, Lynch JA, Xiaolong Ouyang X, Genant HK (2005) Femoral neck trabecular microstructure in ovariectomized ewes treated with calcitonin: MRI microscopic evaluation. J Bone Miner Res 20:125–130PubMedCrossRefGoogle Scholar
  3. 3.
    Feldkamp LA, Goldstein SA, Parfift AM, Jesioil G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11PubMedGoogle Scholar
  4. 4.
    Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 8:833–842PubMedCrossRefGoogle Scholar
  5. 5.
    Parfitt AM, Matthews C, Villanueva A (1983) Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest 72:1396–1409PubMedCrossRefGoogle Scholar
  6. 6.
    Guilak F (1994) Volume and surface area of viable chondrocytes in situ using geometric modeling of serial confocal sections. J Microsc 173:245–256PubMedGoogle Scholar
  7. 7.
    Hildebrand T, Ruegsegger P (1997) A new method for the model independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRefGoogle Scholar
  8. 8.
    Odgaard A, Gundersen HJG (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstruction. Bone 14:173–182PubMedCrossRefGoogle Scholar
  9. 9.
    Engelke K, Kalender W (1998) Beyond bone densitometry: assessment of bone architecture by x-ray computed tomography at various levels of resolution. In: Genant HK, Guglielmi G, Jergas M (eds) Bone Densitometry and Osteoporosis. Springer, Berlin, pp 417–447Google Scholar
  10. 10.
    Jiang Y, Zhao J, Augat P, Ouyang X, Lu Y, Majumdar S, Genant HK (1998) Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 13:1783–1790PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang Y, Zhao J, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1-34) (teriparatide) improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941PubMedCrossRefGoogle Scholar
  12. 12.
    Kinney JH, Lane NE, Haupt DL (1995) In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10:264–270PubMedGoogle Scholar
  13. 13.
    Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389PubMedCrossRefGoogle Scholar
  14. 14.
    Engelke K, Song SM, Glüer CC, Genant HK (1996) A digital model of trabecular bone. J Bone Miner Res 11:480–489PubMedGoogle Scholar
  15. 15.
    Miiller R, Rüegsegger P (1996) Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J Biomech 29:1053–1060CrossRefGoogle Scholar
  16. 16.
    Sugita H, Oka M, Toguchida J, Nakamura T, Ueo T, Hayami T (1999) Anisotropy of osteoporotic cancellous bone. Bone 24:513–516PubMedCrossRefGoogle Scholar
  17. 17.
    Majumdar S, Kothari M, Augat P, Newitt DC, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional bone architecture and biomechanical properties. Bone 22:445–454PubMedCrossRefGoogle Scholar
  18. 18.
    Engelke K, Graeff W, Meiss L, Hahn M, Delling G (1993) High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections. Invest Radiol 28:341–349PubMedCrossRefGoogle Scholar
  19. 19.
    Geraets WG, Van der Stelt PF, Lips P, Elders PJM, Van Ginkel FC, Burger EH (1997) Orientation of the trabecular pattern of the distal radius around the menopause. J Biomech 30:363–370PubMedCrossRefGoogle Scholar
  20. 20.
    Engelke K, Dix W, Graeff W (1991) Quantitative microtomography and microradiography of bones using synchrotronradiation. Presented at 8th International Workshop on Bone Densitometry, Bad Reichenhall, GermanyGoogle Scholar
  21. 21.
    Rüegsegger P, Koller B, Muller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29PubMedCrossRefGoogle Scholar
  22. 22.
    Hildebrand T, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comp Methods Biomech Biomed Eng 1:15–23CrossRefGoogle Scholar
  23. 23.
    Jiang Y, Zhao J, Recker RR, Draper MW, Genant HK (2000) Longitudinal changes between premenopausal and postmenopausal in three-dimensional trabecular microstructural characteristics of human iliac crest bone biopsies. J Bone Miner Res 15: S184Google Scholar
  24. 24.
    Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53:S121-S125PubMedCrossRefGoogle Scholar
  25. 25.
    Jiang Y, Zhao J, Eriksen EF, Genant HK (2003) Reproducibility of micro-CT quantification of 3D microarchitecture of the trabecular and cortical bone in the iliac crest of postmenopausal osteoporotic women and their treatment with teriparatide [rhPTH(l-34)]. RSNA 2003:571Google Scholar
  26. 26.
    Zhao J, Jiang Y, Vedi S, Compston JE, Genantt HK (2002) Longitudinal changes in three-dimensional trabecular microarchitecture of paired iliac crest bone biopsies before and after estrogen replacement therapy in postmenopausal women. J Bone Miner Res 17: S208Google Scholar
  27. 27.
    Borah B, Ritman EL, Dufresne TE, Liu S, Chmielewski PA, Jorgensen SM, Reyes DA, Turner RT, Phipps RJ, Manhart MD, Sibonga JD (2004) Five year residronate therapy normalizes mineralization: synchrotron radiation µCT study of sequential triple biopsies. J Bone Miner Res 19:S308CrossRefGoogle Scholar
  28. 28.
    Dempster DW, Cosman F, Kurland E, Muller R, Nieves J, Woelfert L, Shane E, Plavetic K, Bilezikian J, Lindsay R (2000) Two- and three-dimensional structural analysis of paired biopsies from osteoporotic patients before and after treatment with parathyroid hormone. J Bone Miner Res 15:S194CrossRefGoogle Scholar
  29. 29.
    Jiang Y, Zhao J, Genant HK, Dequeker J, Geusens P (1997) Longterm changes in bone mineral and biomechanical properties of vertebrae and femur in aging, dietary calcium restricted and/or estrogen-deprived/-replaced rats. J Bone Miner Res 19:820–831CrossRefGoogle Scholar
  30. 30.
    Jiang Y, Zhao J, Prevrhal S, Genant HK (1999) Three-dimensional trabecular microstructure, bone mineral density, and biomechanical properties of the vertebral body of ovariectomized rats with estrogen replacement therapy. J Bone Miner Res 14(S1): S534Google Scholar
  31. 31.
    Zhao J, Jiang Y, Genant HK (2000) Three-dimensional trabecular microstructure and biomechanical properties and their relationship in different bone quality models. Radiology 217(P):411Google Scholar
  32. 32.
    Zhao J, Jiang Y, Prevrhal S, Genant HK (2000) Effects of low dose long-term sodium fluoride on three-dimensional trabecular microstructure, bone mineral, and biomechanical properties of rat vertebral body. J Bone Miner Res 15:816Google Scholar
  33. 33.
    Turner CH, Hsieh YF, Muller R, Bouxsein ML, Rosen CJ, McCrann ME, Donahue LR, Beamer WG (2001) Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. J Bone Miner Res 16:206–213PubMedCrossRefGoogle Scholar
  34. 34.
    He B, Jiang Y, Zhao J, Genant HK, Goltzman D, Karaplis AC (2000) Quantitative assessment of three-dimensional trabecular bone microstructure in PTHrP wild type and heterozygous-null mice using micro computed tomography. J Bone Miner Res 15: S186Google Scholar
  35. 35.
    Takeshita S, Namba N, Zhao J, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, Humphries RK, Krystal G, Teitelbaum SL, Ross FP(2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyperresorptive osteoclasts. Nat Med 8:943–949PubMedCrossRefGoogle Scholar
  36. 36.
    Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA 99:13049–13054PubMedCrossRefGoogle Scholar
  37. 37.
    Chen D, Qiao M, Story B, Zhao M, Jiang Y, Zhao J, Feng J, Xie Y, Huang S, Roberts A, Karsenty G, Mundy G, (2003) BMP signaling through the Smad1 pathway is required for normal postnatal bone formation. J Bone Miner Res 18:S6CrossRefGoogle Scholar
  38. 38.
    Zhao J, Jiang Y, Shen V, Bain S, Genant HK (2000) µGT and pQCT assessments of a murine model of postmenopausal osteoporosis and estrogen therapy. Osteoporosis Int 11(S3):S11Google Scholar
  39. 39.
    Van Rietbergen B (2003) Finite element modeling. In: Abstract Book of the 1st µCT User Workshop, Philadelphia, PAGoogle Scholar
  40. 40.
    Han B, Brodie T, Shen Y, Triantafillou J, Scates P, Willams J (2001) Subchondral bone changes in an ACLT model of osteoarthritis in the dog. In: Proceedings, International Symposim on Bone Biotechnology and Histotechnology, Phoenix, AZ, March 7-10, 2001, p 31Google Scholar
  41. 41.
    Bonse U, Busch F, Gunnewig O, Beckmann F, Pahl R, Delling G, Hahn M, Graeff W (1994) 3D computed X-ray tomography of human cancellous bone at 8 üm spatial and 10-4 energy resolution. Bone Miner 25:25–38PubMedCrossRefGoogle Scholar
  42. 42.
    Smith CB, Silver MD (1994) Comparison between single slice CT and volume CT. In: Czichos HCH, Schnitger D (eds) International Symposium on Computerized Tomography for Industrial Applications, Bundesministerium des Innern, Bundesanstalt fur Materialforschung und-prufung, Berlin, Germany, 8-10 June, 1994Google Scholar
  43. 43.
    Holdsworth DW, Robarts JP, Thornton MM (2001) Validation of cone-beam reconstruction for bone micro-CT. In: Proceedings, International Symposim on Bone Biotechnology and Histotechnology, Phoenix, AZ, March 7-10, 2001, p 33Google Scholar
  44. 44.
    Grodzins L (1983) Optimum energy for x-ray transmission tomography of small samples. Nucl Instrum Methods 206:541–543CrossRefGoogle Scholar
  45. 45.
    Peyrin F, Salome M, Cloetens P, Ludwig W, Ritman, Ruegsegger P, Laval-Jeantet AM, Baruchel J (1998) What do micro-CT examinations reveal at various resolutions: a study of the same trabecular bone samples at the 14, 7, and 2 micron level. Presented at the Symposium on Bone Architecture and the Competence of Bone, Ittingen, SwitzerlandGoogle Scholar
  46. 46.
    Lane NE, Thompson JM, Strewler GJ, Kinney JH (1995) Intermittent treatment with human parathyroid hormone (hPTH[l-34]) increased trabecular bone volume but not connectivity in osteopenic rats. J Bone Miner Res 10:1470–1477PubMedCrossRefGoogle Scholar
  47. 47.
    Lane NE, Haupt D, Kimmel DB, Modin G, Kinney JH (1999) Early estrogen replacement therapy reverses the rapid loss of trabecular bone volume and prevents further deterioration of connectivity in the rat. J Bone Miner Res 14:206–214PubMedCrossRefGoogle Scholar
  48. 48.
    Kinney JH, Haupt DL, Balooch M, Ladd AJ, Ryaby JT, Lane NE (2000) Three-dimensional morphometry of the L6 vertebra in the ovariectomized rat model of osteoporosis: biomechanical implications. J Bone Miner Res 15:1981–1991PubMedCrossRefGoogle Scholar
  49. 49.
    Flynn MJ, Seifert HA, Irving TC, Lai B (2001) Measurement of bone mineralization in whole trabeculae using 3D x-ray microtomography. In: Proceeding of International Symposim on Bone Biotechnology and Histotechnology. Phoenix, March 7-10, 2001, p 28Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Yebin Jiang
    • 1
  • Jenny Zhao
    • 1
  • Er-Yuan Liao
    • 2
  • Ru-Chun Dai
    • 2
  • Xian-Ping Wu
    • 2
  • Harry K. Genant
    • 1
  1. 1.Osteoporosis and Arthritis Research Group, Department of RadiologyUniversity of California-San FranciscoSan FranciscoUSA
  2. 2.Institute of Endocrinology & Metabolismthe Second Xiang-Ya Hospital of Central South UniversityHunanChina

Personalised recommendations