Journal of Bone and Mineral Metabolism

, Volume 23, Supplement 1, pp 30–35 | Cite as

Novel experimental effects on bone material properties and the pre- and postyield behavior of bones may be independent of bone mineralization

  • Gustavo R. Cointry
  • Ricardo F. Capozza
  • Maria A. Chiappe
  • Sara Feldman
  • Margarita D. Meta
  • Stella M. Daniele
  • Néstor M. Fracalossi
  • Paola Reina
  • José L. Ferretti


In this article, we summarize the results of six different tomographic/biomechanical rat studies involving hypophysectomy (Hx), ovariectomy, treatment with rhGH, olpadronate, alendronate, and toxic doses of aluminum and the development of a genetic diabetes in theeSS strain. All these conditions induced some interesting and rarely reported effects on postyield bone strength. These effects were generally related neither to the degree of mineralization or the elastic modulus of the bone tissue nor to the preyield behavior of the bones. In two particular cases (Hx,eSS), the elastic modulus of bone tissue varied independently of its degree of mineralization. These results suggest the involvement of some microstructural factor(s) of bone tissue resistance to crack progression (a postyield feature of bone behavior), rather than to crack initiation (the yield-determining factor) in the corresponding mechanism. Changes in collagen or crystal structure may play that role. These changes are relevant to the mechanism of fracture production during plastic deformation, a feature of bone strength that might be independent from mineralization. Therefore, these changes might help to explain some effects of novel treatments on bone strength unrelated to bone mineralization. This questions the belief that the remaining bone mass in metabolic osteopenias is biologically and mechanically normal.

Key words

Bone material properties Bone elastic modulus Bone biomechanics Bone mineralization pQCT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferretti JL (1998) Biomechanical properties of bone. In: Genant HK, Guglielmi G, Jergas M (eds). Bone Densitometry and Osteoporosis. Springer, Berlin, pp 143–161Google Scholar
  2. 2.
    Ferretti JL, Cointry G, Capozza R, Capiglioni R, Chiappe M (2001) Analysis of biomechanical effects on bone and on the muscle-bone interactions in small animal models. J Musculoskel Neuron Interact 1:263–274Google Scholar
  3. 3.
    Rho JY, Kuhn-S L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102PubMedCrossRefGoogle Scholar
  4. 4.
    Martin R, Burr D, Sharkey N (1998) Skeletal Tissue Mechanics. Springer, New YorkGoogle Scholar
  5. 5.
    Cointry G, Capozza R, Negri A, Roldán E, Ferretti JL (2004) Biomechanical background for a noninvasive assessment of bone strength and muscle-bone interactions. J Musculoskel Neuron Interact 4:1–11Google Scholar
  6. 6.
    Currey J (1999) The design of mineralized tissues for their mechanical functions. J Exp Biol 202:3285–3291PubMedGoogle Scholar
  7. 7.
    Frost H, Ferretti JL, Jee W (1998) Some roles of mechanical usage, muscle strength, and the mechanostat in skeletal physiology, disease, and research. Calcif Tissue Int 62:1–7PubMedCrossRefGoogle Scholar
  8. 8.
    Ferretti JL, Spiaggi E, Capozza R, Cointry G, Zanchetta J (1992) Interrelationships between geometric and mechanical properties of long bones from three rodent species with very different biomass. J Bone Miner Res 7(suppl 2):423–425Google Scholar
  9. 9.
    Ferretti JL, Capozza R, Mondelo N, Montuori E, Zanchetta J (1993) Determination of femur structural properties by geometric and material variables as a function of body weight in rats. Bone 14:265–270PubMedCrossRefGoogle Scholar
  10. 10.
    Ferretti JL, Capozza R, Mondelo N, Zanchetta J (1993) Interrelationships between densitometrical, geometric and mechanical properties of rat femurs. J Bone Miner Res 8:1389–1396PubMedCrossRefGoogle Scholar
  11. 11.
    Frost H (2004) The Utah Paradigm of Skeletal Physiology. ISMNI, AthensGoogle Scholar
  12. 12.
    Ferretti JL, Frost H, Gasser J, High W, Jee W, Jerome C, Mosekilde L, Thompson D (1995) Perspectives on osteoporosis research. Calcif Tissue Int 57:399–404PubMedCrossRefGoogle Scholar
  13. 13.
    Ferretti JL (1995) Effects of bisphosphonates on bone biomechanics. In: Bijvoet O, Fleisch H, Canfield R, Russell R (eds) Bisphosphonate on Bones. Elsevier, Amsterdam, pp 211–229Google Scholar
  14. 14.
    Ferretti JL, Vázquez S, Delgado C, Capozza R, Cointry G (1992) Biphasic dose-response curves of Cortisol effects on rat diaphyseal bone biomechanics. Calcif Tissue Int 50:49–54PubMedCrossRefGoogle Scholar
  15. 15.
    Feldman S, Cointry G, Sarrió L, Ferretti JL, Capozza R (2004) Effects of hypophysectomy and growth hormone replacement on cortical bone structure and biomechanics in rats. Bone 34: 203–215PubMedCrossRefGoogle Scholar
  16. 16.
    Cointry G, Mondelo N, Capozza R, Ferretti JL (2004) Effects of high doses of olpadronate on the material properties and post-yield behavior of bones in intact rats. Bone 34(suppl 1):49–50Google Scholar
  17. 17.
    Chiappe M, Cointry G, Capozza R, Iorio G, Alvarez E, Zanchetta J, Ferretti JL (2004) Alendronate effects on pre- and post-yield behavior of cortical bone in ovariectomized rats may be independent of bone mineralization. Bone 34(suppl 1):49Google Scholar
  18. 18.
    Cointry G, Capozza RF, Negri AL, Ferretti JL (2005) Biomechanical impact of aluminum accumulation on the pre- and post-yield behavior of rat cortical bone. J Bone Miner Metab 23:15–23PubMedCrossRefGoogle Scholar
  19. 19.
    Daniele S, Cointry G, Meta M, Montenegro S, Tarrés M, Martínez M, Ferretti JL (2001) Bone geometry and biomechanics in spontaneously diabetic,eSS rats. Bone 28(suppl 5):120Google Scholar
  20. 20.
    Kanis J (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporosis Int 4:368–372CrossRefGoogle Scholar
  21. 21.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrences of osteoporotic fractures. Br Med J 312:1254–1258Google Scholar
  22. 22.
    Meunier P (1999) Evidence-based medicine and osteoporosis: a comparison of fracture risk reduction data from osteoporosis randomised trials. Int J Clin Pract 53:122–127PubMedGoogle Scholar
  23. 23.
    Vilani P, Bondino-R R, Bouvenot G (1998) Fragilité des données acquises de la science. Ľexemple du fluor dans ľosteoporose. Presse Med 27:361–364Google Scholar
  24. 24.
    Wilkin T (1999) Changing concepts in osteoporosis. Br Med J 318:862–865Google Scholar
  25. 25.
    Ferretti JL, Capozza R, Zanchetta J (1996) Mechanical validation of a tomographic (pQCT) index for the noninvasive assessment of rat femur bending strength. Bone 18:97–102PubMedCrossRefGoogle Scholar
  26. 26.
    Armitage P, Berry G (1994) Statistical Methods in Medical Research. Blackwell, LondonGoogle Scholar
  27. 27.
    Ferretti JL (1997) Noninvasive assessment of bone architecture and biomechanical properties in animals and humans employing pQCT technology. J Jpn Soc Bone Morphom 7:115–125Google Scholar
  28. 28.
    Lissett C, Shalet S (2000) Effects of growth hormone on bone and muscle. Growth Horm IGF Res 10:95–101CrossRefGoogle Scholar
  29. 29.
    Martinez D, Orth M, Carr K, Vanderby R, Vailas A (1996) Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone. Am J Physiol Endocrinol Metab 33:51–59Google Scholar
  30. 30.
    Svoboda E, Howley T, Deporter D (1983) Collagen fiber diameter and its relation to collagen turnover in three soft tissues in the rat. Connect Tiss Res 12:43–48CrossRefGoogle Scholar
  31. 31.
    Kohles S, Martinez D (1999) Elastic and physicochemical relationships within cortical bone. J Biomed Mat Res 49:479–488CrossRefGoogle Scholar
  32. 32.
    Landis W (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals and their organic matrix. Bone 16:533–544PubMedCrossRefGoogle Scholar
  33. 33.
    Oxlund H, Barckman M, Ortöft G, Andreassen T (1995) Reduced concentration of collagen cross-links is associated with reduced strength of bone. Bone 17(suppl 4):365–371CrossRefGoogle Scholar
  34. 34.
    Jörgensen P, Bak B, Andreassen T (1991) Mechanical properties and biochemical composition of rat cortical femur and tibia after long-term treatment with biosynthetic growth hormone. Bone 12:353–359PubMedCrossRefGoogle Scholar
  35. 35.
    Ferretti JL, Mondelo N, Capozza R, Cointry G, Zanchetta J, Montuori E (1995) Effects of large doses of olpadronate on mineral density, cross-sectional architecture, and mechanical properties of rat femurs. Bone 16(suppl 4): 285–293Google Scholar
  36. 36.
    Einhorn T, Boskey A, Gundberg C, Vigorita V, Devlin V, Beyer M (1991) The mineral and mechanical properties of bone in chronic experimental diabetes. J Orthop Res 6:317–323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Gustavo R. Cointry
    • 1
  • Ricardo F. Capozza
    • 1
  • Maria A. Chiappe
    • 2
  • Sara Feldman
    • 3
  • Margarita D. Meta
    • 4
  • Stella M. Daniele
    • 5
  • Néstor M. Fracalossi
    • 1
  • Paola Reina
    • 1
  • José L. Ferretti
    • 1
  1. 1.Center for P-Ca Metabolism Studies (CEMFoC), National University of Rosario (UNR)RosarioArgentina
  2. 2.Department of PhysiologyUniversity of Buenos AiresBuenosArgentina
  3. 3.Department of PhysiologyNational University of RosarioRosarioArgentina
  4. 4.Department of RadiologyUniversity of California-San FranciscoSan FranciscoUSA
  5. 5.Clinical Biochemistry DepartmentNational University of RosarioRosarioArgentina

Personalised recommendations