Advertisement

Canadian Anaesthetists’ Society Journal

, Volume 20, Issue 5, pp 647–658 | Cite as

Computer aid in intensive care

  • Roger Meloche
  • Jacques R. Boucher
  • Adele Bedrossian
  • Nadim Raphael
Article

Keywords

NASH CANADIAN Anaesthetist Artificial Ventilation Prolonged Mechanical Ventilation Respirator Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

La ventilation mécanique à long terme, qui a contribué à sauver des vies autrefois perdues, a aussi aidé à créer de nouvelles complications: par exemple, le poumon de respirateur lorsque des concentrations élevées d'oxygène doivent être employées. Les méthodes ordinaires d'évaluation de l'état de ces patients deviennent insuffisantes. D'où la nécessité de trouver de nouveaux moyens tel l'analyse de Riley-Cournand qui, par la mesure de gaz expirés et l'analyse des gaz du sang artériel et veineux, peut nous donner, avec l'aide d'un ordinateur, une foule de renseignements inappréciables sur la dynamique cardiovasculaire et la fonction pulmonaire. Trois cas cliniques illustrent l'utilité de l'analyse de Riley-Cournand pour le traitement de cette catégorie de patients et prouvent sa valeur académique et son importance comme outil de recherche.

References

  1. 1.
    Engstrom, C.G. Treatment of severe cases of respiratory paralysis by the Engstrom respirator. Brit. Med. J. 666 (1952).Google Scholar
  2. 2.
    Bjork, V.O. &Engstrom, C.G. The treatment of ventilatory insufficiency after pulmonary resection with tracheostomy and prolonged artificial ventilation. J. Thoracic Surg.30: 356 (1955).Google Scholar
  3. 3.
    Bjork, V.O. &Engstrom, C.G. The treatment of ventilatory insufficiency by tracheostomy and artificial ventilation. J. Thoracic Surg.34: 228 (1957).Google Scholar
  4. 4.
    Spencer, S.C., Vincent, D.W., Lin, N.C., &Bahrson, H.T. Use of a mechanical respirator in the management of respiratory insufficiency following trauma or operation for cardiac or pulmonary disease. J. Thoracic Sur.38: 758 (1959).Google Scholar
  5. 5.
    Norlander, O.P., Bjork, V.O., Crafoord, C., Friberg, O., Holmdahl, N., Swensson, A. &Widman, B. Controlled ventilation in medical practice. Anesthesia15: 285 (1959).Google Scholar
  6. 6.
    Thung, N., Herzog, P., Christlieb, I.I., Thompson, W.M., &Dammann, F.J. The cost of respiratory effort in post-operative cardiac patients. Circ,28: 552 (1963).Google Scholar
  7. 7.
    Bendixen, H.H., Egbert, L.D., Hedley-White, J.et al. Respiratory care. St-Louis, C.V. Mosby Company, 1965.Google Scholar
  8. 8.
    Pontoppidan, H., Laver, M.B., &Geffin, B. Acute respiratory failure in the surgical patient. Adv. Surg.4: 163–254 (1970).PubMedGoogle Scholar
  9. 9.
    Pontoppidan, H., Geffin, B., &Lowenstein, E. Acute respiratory failure in the adult (first of three parts). N. Engl. J. Med.287: 690–697 (1972).PubMedGoogle Scholar
  10. 10.
    Clark, J.M. &Lambertsen, C.J. Pulmonary oxygen toxicity: a review. Pharmacol. Rev.23: 37–133 (1971).PubMedGoogle Scholar
  11. 11.
    Lee, C.J., Lyons, J.H., &Konisberg, S.et al. Effects of spontaneous and positive pressure breathing of ambiant air and pure oxygen at one atmosphere pressure on pulmonary surface characteristics, J. Thoracic Cardiovasc. Surg.53: 759–769 (1967).Google Scholar
  12. 12.
    Sladen, A., Laver, M.B., &Pontoppidan, H. Pulmonary complications and water retention in prolonged mechanical ventilation. N. Engl. J. Med.279: 448–453 (1968).PubMedCrossRefGoogle Scholar
  13. 13.
    Nash, G., Blennerhassett, J.B., &Pontoppidan, H. Pulmonary lesions associated with oxygen therapy and artificial ventilation. New Engl. J. Med.276: 368–374 (1967).PubMedGoogle Scholar
  14. 14.
    Foëx, P., Meloche, R., &Prys-Roberts, C. Studies of anaesthesia in relation to hypertension: III Pulmonary gaz exchange during spontaneous ventilation. Brit. J. Anaesth.43: 644 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    Kelman, G.R. Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol.21: 1375 (1966).PubMedGoogle Scholar
  16. 16.
    Bradley, R.D. Diagnostic rightheart catheterisation with miniature catheters in severely ill patients. Lancet2: 941 (1964).PubMedCrossRefGoogle Scholar
  17. 17.
    Swan, H.J.C., Ganz, W., Forrester, T.et al. Catheterization of the heart in man with the use of a flow directed balloon tipped catheter. New Engl. J. Med.283: 447–451 (1970).PubMedGoogle Scholar
  18. 18.
    Hedley-White, J. &Winter, P.M. Oxygen therapy. Clin. Pharmac. and Ther.8: 696–737 (1967).Google Scholar
  19. 19.
    Severinghaus, J.W. Electrodes for blood and gaz PCO2, PO2 and blood pH. Acta Anaesth. Scand. Suppl.11: 207 (1962).CrossRefGoogle Scholar
  20. 20.
    Siggaard-Andersen, O. The pH log-pCO2 acid-base nomogram revised. Scand. J. Clin. Lab. Invest.14: 598 (1962).CrossRefGoogle Scholar
  21. 21.
    Scholander, P.F. Analyser for accurate estimation of respiratory gazes in one-half cubic centimeter samples. J. Biol. Chem.167: 235–250 (1947).PubMedGoogle Scholar
  22. 22.
    Kelman, G.R., &Nunn, J.F. Nomograms for correction of blood PO2, PCO2, pH and base excess for time and temperature, J. Appl. Physiol.21: 1484 (1966).PubMedGoogle Scholar
  23. 23.
    Enghoff, H. Volumen inefficax. Bemerkungen zur frage des schädlichen raumes upsala läk. Fören Förh,44: 191 (1938).Google Scholar
  24. 24.
    Nunn, J.F. Indirect determination of the ideal alveolar oxygen tension during and after nitrous oxide anaesthesia. Brit. J. Anaesth.35: 8 (1963).PubMedCrossRefGoogle Scholar
  25. 25.
    Berggren, S.M. The oxygen deficit of arterial blood caused by non-ventilating parts of the lung. Acta physiol. Scand. suppl. 11 (1942).Google Scholar
  26. 26.
    Riley, R.L., Cournand, A., &Donald, K.W. Analysis of factors affecting partial pressures of O2 and CO2 in gaz and blood of lungs: methods. J. Appl. Physiol.4: 102 (1951).PubMedGoogle Scholar
  27. 27.
    Fick, A. Veber die messung des blutquantums in den herzventrikeln. Sifzungsb. der phys.-med. Ges. Zu Wurzburg36 (1870).Google Scholar
  28. 28.
    Perutz, M.S., Rossman, M.G., Culis, A.F., Mairhead, H., Nill, G., &North, A.C.T. Structure of hemoglobin. A three dimensional fourier synthesis at 5.5-A resolution, obtained by X-ray analysis. Nature185: 416 (London 1960).PubMedCrossRefGoogle Scholar
  29. 29.
    Severinghaus, J.W. Blood gaz calculator. J. Appl. Physiol.21: 1108 (1966).PubMedGoogle Scholar
  30. 30.
    Kelman, G.R. Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol.21: 1375 (1966).PubMedGoogle Scholar
  31. 31.
    Kelman, G.R. Calculation of certain indices of cardiopulmonary function using a digital computer. Resp. Physiol.1: 335 (1966).CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1973

Authors and Affiliations

  • Roger Meloche
    • 1
  • Jacques R. Boucher
    • 1
  • Adele Bedrossian
    • 2
  • Nadim Raphael
    • 2
  1. 1.Department of AnaesthesiaHôpital Notre-DameMontréal
  2. 2.Faculté de Médecine FrançaiseBeyrouth

Personalised recommendations