Advertisement

Biotechnology and Bioprocess Engineering

, Volume 11, Issue 4, pp 282–287 | Cite as

Purification and characterization of a recombinantCaulobacter crescentus epoxide hydrolase

  • Seungha Hwang
  • Hyejin Hyun
  • Byoungju Lee
  • Youngseub Park
  • Eun Yeol Lee
  • Chayong Choi
Article

Abstract

ACaulobacter crescentus epoxide hydrolase (CCEH) from a recombinantEscherichia coli was purified to homogeneity using a three-step procedure. The CCEH protein was purified 7.3-fold with a 22.9% yield in overall activity. The optimal reaction temperature and pH were determined to be 37°C and pH 8.0, respectively. The addition of 10% (v/v) dimethylsulfoxide as a cosolvent improved the enantioselectivity of CCEH for a batch kinetic resolution of racemic indene oxide.

Keywords

chiral styrene oxide chiral indene oxide Caulobacter crescentus epoxid hydrolase enzyme purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Choi, W. J., C. Y. Choi, J. A. De Bont, and C. A. Weijers (2000) Continuous production of enantiopure 1,2-expoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor.Appl. Microbiol. Biotechnol. 54: 641–646.CrossRefGoogle Scholar
  2. [2]
    Choi, W. J., and C. Y. Choi (2005) Production of chiral expoxides: Epoxide hydrolase-catalyzed enantioselective hydrolysis.Biotechnol. Bioprocess Eng. 10: 167–179.CrossRefGoogle Scholar
  3. [3]
    Breuer, M., K. Ditrich, T. Habicher, B. Hauer, M. Kesseler, R. Stürmer, and T. Zelinski (2004) Industrial methods for the production of optically active intermediates.Angew. Chem. Int. Ed. Engl. 43: 788–824.CrossRefGoogle Scholar
  4. [4]
    Furuhashi, K., M. Shintani, and M. Takagi (1986) Effects of solvents on the production of epoxides byNocardia corallina B-276.Appl. Microbiol. Biotechnol. 23: 218–223.CrossRefGoogle Scholar
  5. [5]
    Panke, S., V. de Lorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications.Appl. Environ. Microbiol. 65: 5619–5623.Google Scholar
  6. [6]
    Patel, R. N., C. G. McNamee, A. Banerice, J. M. Howell, R. S. Robison, and L. J. Szarka (1992) Stereoselective reduction of β-keto esters byGeotrichum candidum.Enzyme Microb. Technol. 14: 731–738.CrossRefGoogle Scholar
  7. [7]
    Fretland, A. J., and C. J. Omiecinski (2000) Epoxide hydrolases: biochemistry and molecular biology.Chem. Biol. Interact. 129: 41–59.CrossRefGoogle Scholar
  8. [8]
    Arand, M., B. M. Hallberg, J. Zou, T. Bergfors, F. Oesch, M. J. van der Werf, J. A. M. de Bont, T. A. Jones, and S. L. Mowbray (2003) Structure ofRhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site.EMBO J. 22: 2585–2592.CrossRefGoogle Scholar
  9. [9]
    Kim, H. S., S. J. Lee, E. J. Lee, J. W. Hwang, S. Park, S. J. K. Kim, and E. Y. Lee (2005) Cloning and characterization of a fish microsomal epoxide hydrolase ofDanio rerio and application to kinetic resolution of racemic styrene oxide.J. Mol. Catal., B Enzym. 37: 30–35.CrossRefGoogle Scholar
  10. [10]
    Nardini, M., I. S. Ridder, H. J. Rozeboom, K. H. Kalk, R. Rink, D. B. Janssen, and B. W. Dijkstra (1999) The X-ray structure of epoxide hydrolase fromAgrobacterium radiobacter AD1. An enzyme to detoxify harmful epoxides.J. Biol. Chem. 274: 14579–14586.CrossRefGoogle Scholar
  11. [11]
    Visser, H., C. A. G. M. Weijers, A. J. J. van Ooyen, and J. C. Verdoes (2002) Cloning, characterization and heterologous expression of epoxide hydrolase-encoding cDNA sequences from yeasts belonging to the generaRhodotorula andRhodosporidium.Biotechnol. Lett. 24: 1687–1694.CrossRefGoogle Scholar
  12. [12]
    Zou, J. Y., B. M. Hallberg, T. Bergfors, F. Oesch, M. Arand, S. L. Mowbray, and T. A. Jones (2000) Structure ofAspergillus niger epoxide hydrolase at 1.8 angstrom resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases.Structure 8: 111–122.CrossRefGoogle Scholar
  13. [13]
    Kim, H. S., J.-H. Lee, S. Park, and E. Y. Lee (2004) Biocatalytic preparation of chiral epichlorohydrins using recombinantPichia pastoris expressing epoxide hydrolase ofRhodotorula glutinis.Biotechnol. Bioprocess Eng. 9: 62–64.CrossRefGoogle Scholar
  14. [14]
    Lee, J. W., E. J. Lee, S. S. Yoo, S. H. Park, H. S. Kim, and E. Y. Lee (2003) Enantioselective hydrolysis of racemic styrene oxide by epoxide hydrolase ofRhodosporidium kratochvilovae SYU-08,Biotechnol. Bioprocess Eng. 8: 306–308.CrossRefGoogle Scholar
  15. [15]
    Argiriadi, M. A., C. Morisseau, B. D. Hammock, and D. W. Christianson (1999) Detoxification of environmental mutagens and carcinogens: Structure-based mechanism and evolution of liver epoxide hydrolase.FASEB J. 13: A1561-A1561.Google Scholar
  16. [16]
    Arand, M., A. Cronin, F. Oesch, S. L. Mowbray, and T. A. Jones (2003) The telltale structures of epoxide hydrolases.Drug Metab. Rev. 35: 365–383.CrossRefGoogle Scholar
  17. [17]
    Hwang, S., H. Hyun, B. Lee, Y. Yark, C. Choi, J. Han, and H. Joo (2006) Screening from the genome databases: Novel epoxide hydrolase fromCaulobacter crescentus.J. Microbiol. Biotechnol. 16: 32–36.Google Scholar
  18. [18]
    Osprian, I., W. Kroutil, M. Mischitz, and K. Faber (1997) Biocatalytic resolution of 2-methyl-2-(aryl) alkyloxiranes using novel bacterial epoxide hydrolases.Tetrahedron Asymmetry 8: 65–71.CrossRefGoogle Scholar
  19. [19]
    Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee, and C. Y. Choi (1998) Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis.Biotechnol. Tech. 12: 225–228.CrossRefGoogle Scholar
  20. [20]
    Morisseau, C., A. Archelas, C. Guitton, D. Faucher, R. Furstoss, and J. C. Baratti (1999) Purification and characterization of a highly enantioselective epoxide hydrolase fromAspergillus niger.Eur. J. Biochem. 263: 387–395.CrossRefGoogle Scholar
  21. [21]
    Monterde, M. I., M. Lombard, A. Archelas, A. Cronin, M. Arand, and R. Furstoss (2004) Enzymatic transformations, Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by theSolanum tuberosum epoxide hydrolase.Tetrahedron Asymmetry 15: 2801–2805.CrossRefGoogle Scholar
  22. [22]
    Chen, C. S., Y. Fujimoto, G. Girdaukas, and C. J. Sih (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers.J. Am. Chem. Soc. 104: 7294–7299.CrossRefGoogle Scholar
  23. [23]
    Botes, A. L. (1999) Affinity purification and characterization of a yeast epoxide hydrolase.Biotechnol. Lett. 21: 511–517.CrossRefGoogle Scholar
  24. [24]
    Kronenburg, N. A. E., M. Mutter, H. Visser, J. A. M. de Bont, and C. A. G. M. Weijers (1999) Purification of an epoxide hydrolase fromRhodotorula gluinis.Biotechnol. Lett. 21: 519–524.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2006

Authors and Affiliations

  • Seungha Hwang
    • 1
  • Hyejin Hyun
    • 2
  • Byoungju Lee
    • 2
  • Youngseub Park
    • 1
  • Eun Yeol Lee
    • 3
  • Chayong Choi
    • 2
  1. 1.Department of Chemical EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of EngineeringSeoul National UniversitySeoulKorea
  3. 3.Department of Food Science and TechnologyKyungsung UniversityBusan

Personalised recommendations