Advertisement

Metals and Materials

, 3:65 | Cite as

Deformation twinning in TiAl: Effects of defect clustering

  • M. H. Yoo
  • A. Hishinuma
Article

Abstract

Possible roles of point defect clustering in the formation of deformation twins in γ-TiAl are critically assessed by reviewing the available models of dislocation-assisted twin nucleation and experimental data on deformation twinning in Ti-56 at.% Al single crystals and two-phase Ti-47 at.% Al alloys. According to the pole mechanism for twinning in the Ll0 structure, a reasonable combination of the stress concentration (n≈r27) and the vacancy supersaturation (c/c0≈13) is needed to overcome the critical stages of twin formation. The so-called radiation-induced ductility reported in Ti-47 at.% Al alloys is attributed to the effective formation of twin embryos in the presence of interstitial-type Frank loops and the subsequent nucleation and growth of twins during plastic deformation.

Keywords

Partial Dislocation Deformation Twinning Line Tension Critical Resolve Shear Stress Pole Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. E. Reed-Hill, J. P. Hirth and H. C. Rogers,Deformation Twinning, eds., TMS Spec. Publ. Vol. 25, 1963.Google Scholar
  2. 2.
    S. Mahajan and D. F. Williams,Int. Metall. Rev. 18, 43 (1973).Google Scholar
  3. 3.
    D. Shechtman, M. J. Blackburn and H. A. Lipsitt,Metall. Trans. 5, 1373 (1974).CrossRefGoogle Scholar
  4. 4.
    H. A. Lipsitt, D. Shechtman and R. E. Schaflik,Metall. Tram. A,6, 1991 (1975).CrossRefGoogle Scholar
  5. 5.
    S. -C. Huang and E. L. Hall,Metall. Trans. A,22, 427 (1991).CrossRefGoogle Scholar
  6. 6.
    F. Appel, P. A. Beaven and R. Wagner,Acta Metall. Mater. 41, 1721 (1993).CrossRefGoogle Scholar
  7. 7.
    M. Yamaguchi, H. Inui, K. Ishida, M. Matsumuro and Y. Shirai,High-Temperature Ordered Intermetallic Alloys VI, eds. J. A. Horton, I. Baker, S. Hanada, R. D. Noebe and D. S. Schwartz, MRS Symp. Proc. Vol. 364, MRS, Pittsburgh, PA, 1995, 3.Google Scholar
  8. 8.
    S. M. L. Sastry and H. A. Lipsitt,Metall. Trans. A,8, 229 (1977).CrossRefGoogle Scholar
  9. 9.
    T. Nakano, H. Y. Yasuda, N. Higashitanaka and Y. Umakoshi,Acta Mater. (submitted).Google Scholar
  10. 10.
    A. Loiseau and A. Lasalmonie,Mater. Sci. Eng. 67, 163 (1984).CrossRefGoogle Scholar
  11. 11.
    H. Oikawa,Mater. Sci. Eng. A,153, 427 (1992).CrossRefGoogle Scholar
  12. 12.
    Z. Jin and T. R. Bieler,Scr. Metall. 27, 1301 (1992).CrossRefGoogle Scholar
  13. 13.
    The Role of Twinning in Fracture of Metals and Alloys, a collection of five papers presented at TMS Symposium,Metall. Trans. A,12, 365 (1989).Google Scholar
  14. 14.
    S. Wardle, I. Phan and G. Hug,Phil. Mag. A,67, 497 (1993).CrossRefADSGoogle Scholar
  15. 15.
    Y. Q. Sun, P. M. Hazzledine and J. W. Christian,Phi. Mag. A,68, 471 (1993).CrossRefADSGoogle Scholar
  16. 16.
    M. A. Morris,Phi. Mag. A,68, 237 (1993).CrossRefADSGoogle Scholar
  17. 17.
    Y. G. Zhang and M. C. Chaturvedi,Phil. Mag. A,68, 915 (1993).CrossRefADSGoogle Scholar
  18. 18.
    M. Loubradou, R. Bonnet and J. M. Pénisson,Phil. Mag. A,72, 1381 (1995).CrossRefADSGoogle Scholar
  19. 19.
    S. Sriram, G. B. Viswanathan, V. J. Vasudevan,Twinning in Advanced Materials, eds. M. H. Yoo and M. Wuttig, TMS, Warrendale, PA, 1994, 383.Google Scholar
  20. 20.
    Z. Jin, S. -W. Cheong and T. R. Bieler,Gamma Titanium Aluminides, eds. Y. -W. Kim, R. Wagner and M. Yamaguchi, TMS, Warrendale, PA., 975.Google Scholar
  21. 21.
    S. R. Singh and J. M. Howe,Phil. Mag. A,65, 233 (1992).CrossRefGoogle Scholar
  22. 22.
    T. Sawai, K. Fukai and A. Hishinuma, to be published.Google Scholar
  23. 23.
    M. H. Yoo, C. L. Fu and J. K. Lee,High-Temperature Ordered Intermetallic Alloys TV, eds.L. A. Johnson, D. P. Pope and J. O. Stiegler, MRS Symp. Proc. Vol. 213, Pittsburgh, PA, 1991,545.Google Scholar
  24. 24.
    J. K. Lee and M. H. Yoo,Metall, Trans. A,21, 2521 (1990).CrossRefGoogle Scholar
  25. 25.
    M. H. Yoo, C. L. Fu and J. K. Lee,J. Phys. III,1, 1065 (1991).CrossRefGoogle Scholar
  26. 26.
    M. H. Yoo, C. L. Fu and J. K. Lee,Twinning in Advanced Materials, eds. M. H. Yoo and M. Wutting, TMS Symp. Proc, Warrendale, PA, 1994, 97.Google Scholar
  27. 27.
    M. Yamaguchi, H. Inui and Y. Shirai,ibid., 177.Google Scholar
  28. 28.
    F. Appel and R. Wagner,ibid., 317.Google Scholar
  29. 29.
    G. T. Gray,III,ibid., 337.Google Scholar
  30. 30.
    A. Couret, S. Farenc, D. Caillard and A. Coujou,ibid., 361.Google Scholar
  31. 31.
    Z. Jin and T. R. Bieler,ibid., 375.Google Scholar
  32. 32.
    T. Fujiwara, A. Nakamura, M. Hosomi, S. R. Nishitani, Y. Shirai and M. Yamaguchi,Phil. Mag. A,61, 591 (1990).CrossRefADSGoogle Scholar
  33. 33.
    H. Inui, M. Matsumuro, D. -H. Wu and M. Yamaguchi,Phi. Mag. A,75, 395 (1997).CrossRefADSGoogle Scholar
  34. 34.
    C. L. Fu and M. H. Yoo,Phil. Mag. Lett. 62, 159 (1990).CrossRefADSGoogle Scholar
  35. 35.
    M. H. Yoo and C. L. Fu,Metall. Trans. A (in press).Google Scholar
  36. 36.
    J. D. Eshelby,Prog. Solid Mech,2, 89 (1961).Google Scholar
  37. 37.
    W. C. Johnson and J. W. Cahn,Ada Metall. 32, 1925 (1984).CrossRefGoogle Scholar
  38. 38.
    B. A. Greenberg,Phys. Stat. Sol. 42, 459 (1970).CrossRefGoogle Scholar
  39. 39.
    G. Hug, A. Loiseau and A. Lasalmonie,Phil, Mag. A,54, 47 (1986).CrossRefADSGoogle Scholar
  40. 40.
    A. Girshik and V. Vitek,High-Temperature Ordered Intermetallic Alloys VI, eds. J. A. Horton, I. Baker, S. Hanada, R. D. Noebe and D. S. Schwartz, MRS Symp. Proc. Vol. 364, Pittsburgh, PA, 1995, 145.Google Scholar
  41. 41.
    S. Farenc, A. Coujou and A. Couret,Phil. Mag. A,67, 127 (1993).CrossRefADSGoogle Scholar
  42. 42.
    M. H. Yoo,Phil, Mag. Lett. (in press).Google Scholar
  43. 43.
    G. Hug., A. Loiseau and P. Veyssière,Phil. Mag. A,57, 499 (1988).CrossRefADSGoogle Scholar
  44. 44.
    H. Inui and M. Yamaguchi, Properties of Complex Inorganic Materials, ed. Gonieet al., Plenum Press, New York, p. 309 (1997).Google Scholar
  45. 45.
    J. A. Venables,Phil. Mag. 6, 379 (1961).CrossRefADSGoogle Scholar
  46. 46.
    A. Hishinuma, K. Nakata, K. Fukai, K. Ameyama and M, Tokizane,J. Nucl. Mater. 199, 168 (1993).CrossRefGoogle Scholar
  47. 47.
    K. Nakata, K. Fukai, A. Hishinuma, K. Ameyama and M. Tokizane,J. Nucl. Mater. 202, 39 (1993).CrossRefADSGoogle Scholar
  48. 48.
    A. Hishinuma, K. Fukai, T. Sawai and K. Nakata,Intermetallics 4, 179 (1996).CrossRefGoogle Scholar
  49. 49.
    A. Hishinuma,J. Nucl. Mater. 239, 267 (1996).CrossRefADSGoogle Scholar
  50. 50.
    E. L. Hall and S. -C. Huang, J. Mater. Res.4, 595 (1989).CrossRefADSGoogle Scholar
  51. 51.
    A. H. Cottrell and B. A. Bilby,Phil. Mag. 42, 573 (1951).MATHGoogle Scholar
  52. 52.
    J. P. Hirth and J. Lothe,Theory of Dislocations, Second Endition, McGraw-Hill Book Co., 1982, p. 825.Google Scholar
  53. 53.
    G. Hug and P. Veyssière,Electron Microscopy in Plasticity and Fracture Research of Materials, eds. U. Messerschmidt, F. Apple, J. Heidenrieich and V. Schmidt, Akademie-Verlag, Berlin, 1989, p. 451.Google Scholar
  54. 54.
    S. R. Singh and J. M. Howe,Scr. Metall. 25, 485 (1991).CrossRefGoogle Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • M. H. Yoo
    • 1
  • A. Hishinuma
    • 2
  1. 1.Metals and Ceramics DivisionOak Ridge National Laboratoryak PidgeUSA
  2. 2.Department of Materials Science and EngineeringJapan Atomic Energy Research InstituteTokaiJapan

Personalised recommendations