Advertisement

Metals and Materials

, Volume 2, Issue 4, pp 233–243 | Cite as

Development of Al-Rich Al-Ti-V intermetallic alloys with duplex microstructures

  • Woong -Seong Chang
  • B. C. Muddle
Article

Abstract

The phases, phase relationships and indentation behaviour observed in a series of Al-Ti-V alloys, based on the composition Al3Ti, have been characterised following chill casting and selected isothermal heat treatments. The results define two separate approaches to the development of duplex microstructures containing uniform fine-scale mixtures of metallic ß-(Ti,V) solid solution and an Ll2derived intermetallic phase. Although the chill-cast microstructures of Al70Ti10V20 and Al62Ti10V28 alloys retained metastable intermediate high temperature phases, duplex metallic-intermetallic microstructures, containing uniform fine-scale distributions of metallic ß-(Ti,V) solid solution in a δ-Al3(Ti,V) intermetallic matrix, have been produced in both alloys during isothermal heat treatments at temperatures in the range 1073–1273 K. In contrast, two-stage heat treatments of an Al55Ti10V35 alloy, involving short term homogenisation at 1523 K followed by extended ageing in the range 1073–1273 K, produced a series of fine-scale, two-phase lamellar microstructures, consisting of alternating lamellae of ß phase and twin-related ξ-Ti5Al11 laths. The cracking resistance of samples with such microstructures was significantly enhanced, while the hardness was maintained at or above that of monolithic δ-Al3Ti.

Keywords

Backscatter Electron Image Intermetallic Alloy Duplex Microstructure Isothermal Heat Treatment Total Crack Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yamaguchi and Y. Umakoshi,Prog. Mater. Sci.,34, 1 (1990).CrossRefGoogle Scholar
  2. 2.
    J. C. Schuster and H. Ipser,Z. Metallkde.,81, 389 (1990).Google Scholar
  3. 3.
    Y. Umakoshi, M. Yamaguchi, T. Yamane, and T. Hirano,J. Mater. Sci.,24, 1599 (1989).CrossRefADSGoogle Scholar
  4. 4.
    E.P. George, J.A. Horton, W.D. Porter and J.H. Schneibel,J. Mater. Res.,5, 1639 (1990).CrossRefADSGoogle Scholar
  5. 5.
    K.S. Kumar, inStructural Intermetallics (eds., R. Darolia, J.J. lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal), p.87, TMS, Warrendale, PA (1993).Google Scholar
  6. 6.
    D.L. Anton and D.M. Shah, inIntermetallic Matrix Composites, (eds., D.L. Anton, P.L. Martin, D.B. Miracle, and R. McMeeking), p.45, MRS, Pittsburgh, PA (1990).Google Scholar
  7. 7.
    Y. Mishima,Tetsu-to-Hagane,81, 943 (1995).Google Scholar
  8. 8.
    K. Hashimoto, H. Doi and T. Tsujimoto,J. Jpn. Inst. Metals,49, 410 (1985).Google Scholar
  9. 9.
    M. Paruchuri and T.B. Massalski, inHigh Temperature Ordered Intermetallic Alloys IV (eds., L.A. Johnson, D.P. Pope, and J.O. Stiegler), p.143, MRS, Pittsburgh, PA (1991).Google Scholar
  10. 10.
    T. Ahmed and H.M. Flower,Mat. Sci. Eng.,A152, 31 (1992).Google Scholar
  11. 11.
    F.H. Hayes, inTernary Alloys, Vol.8, Al-Ni-Tb to Al-Zn-Zr (eds., G. Petzow and G. Effenberg), p.426, VCH, New York (1993).Google Scholar
  12. 12.
    W.-S. Chang and B.C. Muddle,Micron,25, 519 (1994).CrossRefGoogle Scholar
  13. 13.
    W.-S. Chang and B.C. Muddle,Mater. Sci. Eng.,A207, 64 (1996).Google Scholar
  14. 14.
    W.-S. Chang and B.C. Muddle, Submitted to Acta metall. mater (1996).Google Scholar
  15. 15.
    M.J. Blackburn, inThe Science, Technology and Application of Titanium (eds., R.I. Jaffee and N.E. Promisel), p.633, Pergamon Press, Oxford (1970).Google Scholar
  16. 16.
    Z. Nishiyama, inMartensitic Transformation (eds., M.E. Fine, M. Meshii and CM. Wayman), p.7, Academic Press, New York (1975).Google Scholar
  17. 17.
    W. Pitsch,Phil. Mag.,4, 577 (1959).CrossRefADSGoogle Scholar
  18. 18.
    W.-S. Chang and B.C. Muddle,Mater. Sci. Eng.,A192/193, 233 (1995).Google Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • Woong -Seong Chang
    • 1
  • B. C. Muddle
    • 1
    • 2
  1. 1.Research Institute of Industrial Science & TechnologyPohangKorea
  2. 2.Department of Materials EngineeringMonash UniversityClaytonAustralia

Personalised recommendations