Canadian Anaesthetists’ Society Journal

, Volume 18, Issue 5, pp 552–557 | Cite as

The site of action of innovar in the brain

  • Hisashi Yanagida
  • Hideo Yamamura


Deep sedation and a laissez faire attitude occurs in cats when Innovar is placed into the posterior hypothalamus, the centro-median thalamic nucleus and the ventropostero-lateral thalamic nucleus through precise stereotaxically implanted recording cannulae. This sedation persists in the presence of pin-prick stimulation as observed by the persistence of neocortical deactivation and hippocampal activation or seizures.

Following the application of Innovar into the mesencephalic reticular and pontine reticular formations, no persistent behavioural or electroencephalographic evidence of sedation was observed in the presence of pin-prick stimulation.


Droperidol Reticular Formation Thalamic Nucleus Posterior Hypothalamus Mesencephalic Reticular Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Il se produit une sédation profonde et une attitude de “laisser faire” chez les chats lorsqu’on introduit de l’Innovar dans l’hypothalamus postérieur, dans le noyau thalamique centro-médian, et dans le noyau thalamique ventro-postéro-latéral, à l’aide de canules enregistreuses implantées avec précision par une technique stéréotaxique. Cette sédation persiste en présence d’une stimulation par piqure d’épingle comme on l’a observé par la persistance de déactivation néocorticale et d’activation ou attaque de l’hyppocampe.

A la suite d’application d’Innovar dans les formations réticulaires mésencéphaliques et dans les formations réticulaires protubérentielles, on n’a observé aucune évidence de sédation persistante ni dans la conduite générale ni dans l’électroencéphalographie, même après stimulation par piqure d’épingle.


  1. 1.
    Yelnosky, J.;Katz, R.; &Dietrich, E. V. A Study of Some of the Pharmacologic Actions of Droperidol. Toxicol. Appl. Pharmacol.,6: 37 (1964).CrossRefGoogle Scholar
  2. 2.
    Gardocki, J. F. &Yelnosky, J. A Study of Some of the Pharmacologic Actions of Fentanyl Citrate. Toxicol. Appl. Pharmacol.,6: 48 (1964).PubMedCrossRefGoogle Scholar
  3. 3.
    Walker, R. &McIntyre, J. W. Clinical Experience with a Combination of Fentanyl and Droperidol. Canad. Anaesth. Soc. J.,12: 361 (1965).PubMedCrossRefGoogle Scholar
  4. 4.
    Haase, H. J. & Jansen, P. A. J. The Action of Neuroleptic Drugs; A Psychiatric and Pharmacological Investigation. Holland Publishing Company (1965).Google Scholar
  5. 5.
    Nilson, E. Origin, Rationale and Practical Use of Neurolept-Analgesia. Irish J. M. Sc.,6: 407 (1963).CrossRefGoogle Scholar
  6. 6.
    Mandestem, J. P. An Inquiry into The Use of Innovar for Pediatric Medication. Anesth. & Analg.,49: 746 (1970).Google Scholar
  7. 7.
    Moruzzi, G. &Magoun, H. W. Brain Stem Reticular Formation and Activation of theEE, eeg clin. Neurophysiol.,1: 455 (1949).Google Scholar
  8. 8.
    Gellhorn, E.. Physiological Foundations of Neurology and Psychiatry. Minneapolis, Minn.: University of Minnesota Press (1953).Google Scholar
  9. 9.
    Jouvet, H.;Michel, F.; &Courjon, J. Sur un staded’activate electrique cerebrale rapide au cours du sommeil physiologique. C. R. Soc. Biol. (Pris),153: 1024 (1959).Google Scholar
  10. 10.
    Jenkins, L. C.;Ling, G. M.;Foulks, J. G.; &Penrose, G. S. Experimental Central Nervous System Studies Related to Anaesthesia: Clinical Implications: i. Anaesthesia and the Brain Stem Reticular Formation. II. Effect of Reduced Sensory Inflow on Anaesthetic Requirements. Canad. Anaesth. Soc. J.10: 634 (1963).PubMedCrossRefGoogle Scholar
  11. 11.
    Yamaguchi, N.;Ling, G. M.; &Marczynski, T. J. Recruiting Responses Observed during Wakefulness and Sleep in Unanaesthetized Chronic Cats.EEG. Clin. Neurophysiol.,17: 246 (1964).CrossRefGoogle Scholar
  12. 12.
    Munroe, J. P.;Jenkins, L. C.; &Ling, G. M.. Experimental Central Nervous System Studies Related to Anaesthesia: Clinical Implications. III. Effect of Muscle Relaxants on Sensory Inflow. Canad. Anaesth. Soc. J.,13: 109 (1966).PubMedCrossRefGoogle Scholar
  13. 13.
    Green, J. D. &Arduini, A. A. Hippocampal Electrical Activity in Arousal, J. Neurophysiol.,17: 533 (1954).PubMedGoogle Scholar
  14. 14.
    Dement, W. &Kleitman, N. Cyclic Variation inEEG during Sleep and Their Relation to Eye Movements, Body Motility and Dreaming.EEG clin. Neurophysiol.,9: 673 (1957).Google Scholar
  15. 15.
    Gotoh, J. &Ikeda, H. Effect of 5-Hydroxytamine Injected Locally into the Brain Stem onEEG andECG in Chickens. Jap. J. vet. Sci.,31: 265 (1969).Google Scholar
  16. 16.
    Leighton, K. M. &Jenkins, L. C. Experimental Studies of The Central Nervous System Related to Anaesthesia: iv. Effects of Pentobarbital Placement in Caudate Nucleus. Canad. Anaesth. Soc. J.,17: 112 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1971

Authors and Affiliations

  • Hisashi Yanagida
    • 1
  • Hideo Yamamura
    • 2
  1. 1.Department of Anesthesiology, School of MedicineUniversity of TokyoJapan
  2. 2.Department of Anesthesiology, School of MedicineUniversity ofTokyoJapan

Personalised recommendations