Advertisement

Metals and Materials

, Volume 5, Issue 1, pp 1–15 | Cite as

Numerical procedure for simulation of multicomponent and multi-layered phase diffusion

  • Byeong-Joo Lee
Article

Abstract

A mass balance error-free numerical procedure for simulation of multicomponent and multi-layered phase diffusional reactions has been suggested, based on an explicit fixed grid finite difference method. Basically, a local equilibrium was assumed at each phase interface and one dimensional movement of interfaces was considered. Attention was paid to the treatments of newly formed thin phase layers and different molar volumes among interacting phases, together with the removal of a mass balance error. Specially derived finite difference forms were used to treat phase layers thinner than two inter-grid distances. A new flux balance equation which is independent from the molar volume differences among phases and leaves no mass balance error was developed by a transformation of space variable system and by a systematic analysis of sources of mass balance error, respectively. Through some model simulations, it could be shown that the present numerical procedure cantreat multi-layered phase diffusion including thin layered phases and can reproduce transitions of layer sequences during diffusional reactions successfully, leaving no mass balance error.

Key words

numerical procedure simulation multicomponent multiphase diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.-J. Lee and K. H. Oh,Z. Metallkd. 87, 95 (1996).Google Scholar
  2. 2.
    S. Crusius, G. Inden, U. Knoop, L. Hoglund and J. Ågren,Z. Metallkd. 83, 673 (1992).Google Scholar
  3. 3.
    S. K. Kim, N. J. Kim, G. Shin and C. H. Lee,J. Kor. Inst. Met. & Mater. 33, 1144 (1995).Google Scholar
  4. 4.
    A. J. Hickl and R. W. Heckel,Metall. Trans. 6A, 431 (1975).Google Scholar
  5. 5.
    J. Crank,The Mathematics of Diffusion, Clarendon Press, Oxford (1975).Google Scholar
  6. 6.
    Y. Zhou and T. H. North,Modelling Simul. Mater. Sci. Eng. 1, 505 (1993).CrossRefADSGoogle Scholar
  7. 7.
    L. Kaufman and H. Bernstein,Computer Calculation of Phase Diagrams, Academic Press, New York (1970).Google Scholar
  8. 8.
    B.-J. Lee, N. M. Hwang and H. M. Lee,Acta mater. 45, 1867 (1997).CrossRefGoogle Scholar
  9. 9.
    B.-J. Lee,Acta mater. 45, 3993 (1997).CrossRefGoogle Scholar
  10. 10.
    B.-J. Lee,Scripta mater. 38, 499 (1998).CrossRefGoogle Scholar
  11. 11.
    B.-J. Lee,J. Kor. Inst. Met. & Mater. 31, 480 (1993).Google Scholar
  12. 12.
    J.-O. Andersson and J. Agren,J. Appl. Phys. 72, 1350 (1992).CrossRefADSGoogle Scholar
  13. 13.
    J. Fridberg, L.-E. Torndahl and M. Hillert,Jernkont. Ann. 153, 263 (1969).Google Scholar
  14. 14.
    B.-J. Lee,Proceedings of the 6 th Symposium on Phase Transformation (eds., S.-K. Hwang, J.-K. Park and J.-S. Lee), p. 67, Kor. Inst. Met. & Mater., Korea (1996).Google Scholar
  15. 15.
    J. S. Bae, J. R. Soh, S. K. Kim, Y. D. Lee and H. M. Lee,J. Kor. Inst. Met. & Mater. 36, 402 (1998).Google Scholar
  16. 16.
    H. M. Lee, J. S. Bae, J. R. Soh, S. K. Kim and Y. D. Lee,Mater. Trans. JIM 39, 633 (1998).Google Scholar
  17. 17.
    J.-O. Andersson, L. Höglund, B. Jönsson and J. Ågren, inFundamentals and Applications of Ternary Diffusion (ed., G. R. Purdy), p. 153, Pergamon Press, New York (1990).Google Scholar
  18. 18.
    P. Nash (Ed.),Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH (1991).Google Scholar
  19. 19.
    L. S. Castleman and L. L Seigle,Trans. TMS-AIME 212, 589 (1958).Google Scholar

Copyright information

© Springer 1999

Authors and Affiliations

  • Byeong-Joo Lee
    • 1
  1. 1.Materials Evaluation CenterKorea Research Institute of Standards and ScienceYusong-ku, TaejonKorea

Personalised recommendations