Metals and Materials

, Volume 3, Issue 3, pp 178–182 | Cite as

Self-discharge mechanism of vanadium-titanium metal hydride electrodesfor Ni-MH rechargeable battery

  • Jae-Han Jung
  • Han-Ho Lee
  • Ji-Sang Yu
  • Kuk-Jin Jang
  • Jai-Young Lee


In order to investigate the effect of the equilibrium hydrogen pressure (plateau pressure) of metal hydride (MH) alloys on self-discharge behavior, V09Ti01 alloys having multi-plateau pressures (the low and high plateau pressure) have been used as working electrodes in a half cell. A thermal desorption experiment and open-circuit potential monitoring were conducted to observe the self-discharge behavior of the electrodes. From the thermal desorption spectra of fully charged and discharged V09Ti01 electrodes (to-0.7 V vs. Hg/ HgO), it was found that only the high plateau pressure region from V09Ti01 electrodes is electrochemically useful in battery application. However, the open-circuit potential change and thermal desorption spectra of V09Ti01 electrodes after various open-circuit storage periods prove that self-discharge behavior is caused by hydrogen desorption from the low plateau pressure region (10-8 atm) as well as the high plateau pressure region (0.1 atm). Therefore, it is suggested that the self-discharge behavior of V09Ti01 electrodes cannot be suppressed effectively by reduction of the plateau pressure of alloys through alloy modification.In addition, the pressure-composition-isotherms (P-C-T) of the low pressure region can be estimated by using the open-circuit potential corresponding to this region in Nernst’s equation.


Metal Hydride Plateau Pressure Hydrogen Desorption Hydrogen Storage Capacity Metal Hydride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. G. Willems and K. H. J. Buschow,J. Less-Common Met. 129, 13 (1987).CrossRefGoogle Scholar
  2. 2.
    J. J. G. Willems,Philips Tech. Rev. 43, 22 (1986).Google Scholar
  3. 3.
    Y. Q. Lei, Z. P. Li, P. Chen, J. Wu and Q. D. Wang,J. Less-Commen Met. 172–174, 1265 (1991).CrossRefGoogle Scholar
  4. 4.
    T. Sakai, T. Hazama, H. Miyamura, N. Kuriyama, A. Kato and H. Ishikawa,J. Less-Commen Met. 172–174, 1175 (1991).CrossRefGoogle Scholar
  5. 5.
    T. Sakai, H. Ishikawa, K. Oguro, C. Iwakura and H. Yoneyama,J. Electrochem. Soc. 134, 558 (1987).CrossRefADSGoogle Scholar
  6. 6.
    Iwakura, Y. Kajiya, H. Yoneyama, T. Sakai, K. Oguro, H. and H. Ishikawa,J. Electrochem. Soc. 134, 1351 (1989).CrossRefGoogle Scholar
  7. 7.
    Z. Mao, A. Visintin, S. Srinivasan, A. J. Appleby and H. S. Lim,J. Appl. Electrochem. 22, 409 (1992).CrossRefGoogle Scholar
  8. 8.
    S. Venkatesan, B. Reichman and M.A. Fetencko, US Patent 4 728 586, 1988; S. Ovshinsky, P. Gifford, S. Venkatesan, M. A. Fetencko, D. Corrigan and S. Dhar,10th Int. Seminar on Primary and Secondary Battery Technology and Application, Deerfield Beach, FL (1993).Google Scholar
  9. 9.
    J. H. Lee, K. Y. Lee, S. M. Lee and J. Y. Lee,J. Alloys 221, 174(1995).CrossRefGoogle Scholar
  10. 10.
    D. M. Kim, K. Y. Lee and J. Y. Lee,J. Alloys 231, 650(1995).CrossRefGoogle Scholar
  11. 11.
    H. Wenzl,J. Less-Commen Met. 89, 489 (1983).CrossRefGoogle Scholar
  12. 12.
    M. H. J. Van Rijswick,Proc. Int. Symp. on Hydrides for Energy Storage, p. 261, Ge: 10, Norway (1997).Google Scholar
  13. 13.
    S. R. Kim,Ph. D. Thesis, KAIST, Taejon, Korea (1993).Google Scholar
  14. 14.
    J. H. Lee, K. Y. Lee and J. Y. Lee,J. Alloys 232, 197(1996).CrossRefGoogle Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • Jae-Han Jung
    • 1
  • Han-Ho Lee
    • 2
  • Ji-Sang Yu
    • 1
  • Kuk-Jin Jang
    • 1
  • Jai-Young Lee
    • 1
  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyYusong-guKorea
  2. 2.Electronic Materials Research InstituteYusong, Science Town, TaejonKorea

Personalised recommendations