Advertisement

Metals and Materials

, Volume 2, Issue 2, pp 93–96 | Cite as

Fatigue limit of shot peened LC9 aluminum alloy

  • Shengping Wang
  • Yongjun Li
  • Xiuming Chang
  • Yuhui Yang
  • Mei Yao
  • Renzhi Wang
Article
  • 26 Downloads

Abstract

The effects of shot peening on the three-point bending fatigue limit are described for LC9 aluminum alloy. Examination of the fatigue fracture surfaces revealed that the fatigue cracks were initiated under the hardened layer, depending upon the compressive residual stress (CRS) distribution. In this case, the local fatigue limit at the fatigue source is about 1.38 times of that of unstrengthened ones. An explanation is given with reference to the concept of internal fatigue limit бwi, which is regarded as the critical stress to initiate propagative fatigue microcrack in the interior of metal. and an intrinsic property of metal.

Keywords

Fatigue Fatigue Crack Fatigue Limit Compressive Residual Stress Tensile Residual Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Z. Li and D. R. Liu,Mat. of Mech. Eng. Sinica 2, 23 (1984) (in Chinese).Google Scholar
  2. 2.
    J. K. Li, M. Yao and R. Z. Wang, inProc. of the Fourth International Conference on Shot Peening, p. 225 (1990).Google Scholar
  3. 3.
    T. Hirsch, H. Wohlfahrt and E. Marcherauch, inProc. of the Third International Conference on Shot Peening, p. 547, Garmisch-Partenkichen (1987).Google Scholar
  4. 4.
    R. Z. Wang, X. B. Li and H. Wu,Proc. of the Third International Conference on Shot Peening, p. 417.Google Scholar
  5. 5.
    H. Wohlfahrt,Proc. of the Third International Conference on Shot Peening, p. 563.Google Scholar
  6. 6.
    A. J. Collins, Failure of Material in Mechanical Design, John Wiley & Sons, New York, 369 (1981).Google Scholar
  7. 7.
    Ki. J. Kang, Ji. H. Song and Youn Y. Earmme,Fat. Fract. Engng. Mater. Struct,13, 1 (1990).CrossRefGoogle Scholar
  8. 8.
    S. P. Wang, M. Yao and R. Z. Wang,Advanced Materials and Processing, p. 1249, KIMM, Korea (1995).Google Scholar
  9. 9.
    J. K. Li, M. Yao and R. Z. Wang,Ada Aeronautica Sinica,13(11), 670 (1992) (in Chinese).Google Scholar
  10. 10.
    S. P. Wang, Ph. D. Dissertation. Harbin Institute of Technology (1994) (in Chinese).Google Scholar
  11. 11.
    M. Yao, S. P. Wang, J. K. Li and R. Z. Wang,Acta Metall. Sinica,29(11), 511 (1993) (in Chinese).Google Scholar
  12. 12.
    S. P. Wang, M. Yao and R. Z. Wang,Ref. 8, p. 1241.Google Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • Shengping Wang
    • 1
  • Yongjun Li
    • 1
  • Xiuming Chang
    • 1
  • Yuhui Yang
    • 1
  • Mei Yao
    • 2
  • Renzhi Wang
    • 3
  1. 1.General Research Institute for Nonferrous MetalsBeijingChina
  2. 2.Harbin Institute of TechnologyHarbinChina
  3. 3.Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations