Semigroup Forum

, Volume 45, Issue 1, pp 26–37 | Cite as

Interpolation of semigroups and integrated semigroups

  • Wolfgang Arendt
  • Frank Neubrander
  • Ulf Schlotterbeck
Research Article

Keywords

Banach Space Cauchy Problem Semigroup Forum Interpolation Space Abstract Cauchy Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Arl] Arendt, W.,Vector valued Laplace transform and Cauchy problems, Israel J. Math.59 (1987), 327–352.MATHCrossRefMathSciNetGoogle Scholar
  2. [Ar2] Arendt, W.,Resolvent positive operators, Proc. London Math. Soc.54 (1987), 321–349.MATHCrossRefMathSciNetGoogle Scholar
  3. [A-K] Arendt, W., and H. Kellermann,Integrated solutions of Volterra integrodifferential equations and applications, In: Integro-differential Equations, Proc. Conf. Trento 1987. G. Da Prato, M. Iannelli (eds.). Pitman. Research Notes in Mathematics190 (1989), 21–51.Google Scholar
  4. [Be] Beals, R.,On the abstract Cauchy problem, J. Funct. Anal.10 (1972), 281–299.MATHCrossRefMathSciNetGoogle Scholar
  5. [dL] de Laubenfels, R.,Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup Forum41 (1990), 83–95.CrossRefMathSciNetGoogle Scholar
  6. [Do] Doetsch, G.,Handbuch der Laplace-Transformation I, Birkhäuser Verlag, Basel 1950.MATHGoogle Scholar
  7. [Ka] Kantorovitz, S.,The Hille-Yosida space of an arbitrary operator, J. Math. Anal. Appl.136 (1988), 107–111.MATHCrossRefMathSciNetGoogle Scholar
  8. [Ke] Kellermann, H.,Integrated semigroups, Dissertation, Universität Tübingen, 1986.Google Scholar
  9. [K-H] Kellermann, H., and M. Hieber,Integrated semigroups, J. Functional Anal.84 (1989), 160–180.CrossRefMathSciNetGoogle Scholar
  10. [K-L-C] Krein, S. G., Laptev, G. I., and G.A. Cvetkova,On Hadamard correctness of the Cauchy problem for the equation of evolution, Soviet Math. Dokl.11 (1970), 763–766.Google Scholar
  11. [M-O-O] Miyadera, I., Oharu, S., and N. Okazawa,Generation theorems of semigroups of linear operators, Publ. Res. Inst. Math. Sci., Kyoto Univ.8 (1973), 509–555.CrossRefMathSciNetGoogle Scholar
  12. [Na] Nagel, R.,Sobolev spaces and semigroups, Semesterbericht Funktional-analysis Tübingen, Sommersemester 1984.Google Scholar
  13. [Ne1] Neubrander, F.,Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math.135 (1988), 111–155.MATHMathSciNetGoogle Scholar
  14. [Ne2] Neubrander, F.,Integrated semigroups and their application to complete second order problems, Semigroup Forum38 (1989), 233–251.MATHCrossRefMathSciNetGoogle Scholar
  15. [Ne3] Neubrander, F.,Abstract elliptic operators, analytic interpolation semigroups, and Laplace transforms of analytic functions, Semesterbericht Funktionalanalysis, Tübingen, Wintersemester 1988/89.Google Scholar
  16. [N-S] Neubrander, F., and B. Straub,Fractional powers of operators with polynomially bounded resolvent, Semesterbericht Funktionalysis, Tübingen, Wintersemester 1988/89.Google Scholar
  17. [Oh] Oharu, S.,Semigroups of linear operators in a Banach space, Publ. RIMS, Kyoto Univ.7 (1971), 205–260.CrossRefMathSciNetGoogle Scholar
  18. [Pa] Pazy, A., “Semigroups of Linear Operators and Applications to Partial Differential Equations,” Springer Verlag, New-York 1983.MATHGoogle Scholar
  19. [So] Sova, M.,Problème de Cauchy pour équations hyperboliques opérationnelles à coefficients constants non-bornés, Ann. Scuola Norm. Sup. Pisa,22 (1968), 67–100.MATHMathSciNetGoogle Scholar
  20. [T-M1] Tanaka, N., and I. Miyadera,Some remarks on C-semigroups and integrated semigroups, Proc. Japan Acad.63 (1987), 139–142.MATHCrossRefMathSciNetGoogle Scholar
  21. [T-M2] Tanaka, N., and I. Miyadera,Exponentially bounded C-semigroups and integrated semigroups, Tokyo J. Math.12 (1989), 99–115.MATHMathSciNetCrossRefGoogle Scholar
  22. [Th] Thieme, H. R.,Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. analysis and Appl.152 (1990), 416–447.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Wolfgang Arendt
    • 1
    • 2
    • 3
  • Frank Neubrander
    • 1
    • 2
    • 3
  • Ulf Schlotterbeck
    • 1
    • 2
    • 3
  1. 1.Equipe de MathématiquesUniversité de Franche-ComtéBesançon-CedexFrance
  2. 2.Lousiana State UniversityBaton RougeUSA
  3. 3.Mathematisches InstitutUniversität TübingenTübingenRFA

Personalised recommendations