Primitivity in skew Laurent polynomial rings and related rings

  • David A. Jordan


Prime Ideal Maximal Ideal Polynomial Ring Regular Element Infinite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. J. Ergodic Theory Dyn. Syst.9, 67–99 (1989)MATHMathSciNetGoogle Scholar
  2. 2.
    Goldie, A.W., Michler, G.O.: Ore extensions and polycyclic group rings. J. Lond. Math. Soc., II. Ser.9, 337–345 (1974)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Goodearl, K.R., Warfield, R.B. Jr.: Primitivity in differential operator rings. Math. Z.180, 503–523 (1982)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd ed. New York: Addison-Wesley 1989MATHGoogle Scholar
  5. 5.
    Jordan, D.A.: Primitive Ore extensions. Glasg. Math. J.18, 93–97 (1977)MATHCrossRefGoogle Scholar
  6. 6.
    Jordan, D.A.: Primitive skew Laurent polynomial rings. Glasg. Math. J.19, 79–85 (1978)MATHGoogle Scholar
  7. 7.
    Jordan, D.A.: Simple skew Laurent polynomial rings. Commun. Algebra15, 135–137 (1984)CrossRefGoogle Scholar
  8. 8.
    Jordan, D.A.: Iterated skew polynomial rings and quantum groups. J. Algebra156, 194–218 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jordan, D.A.: Krull and global dimension of certain iterated skew polynomial rings. In: Abelian Groups and Noncommutative Rings, a Collection of Papers in Memory of Robert B. Warfield, Jr., Contemp. Math., Am. Math. Soc.130, 201–213 (1992)Google Scholar
  10. 10.
    Joseph, A.: A generalization of Quillen's lemma and its application to the Weyl algebras. Isr. J. Math.28, 177–192 (1977)MATHCrossRefGoogle Scholar
  11. 11.
    Lane, D.R.: PhD thesis, University of London (1976)Google Scholar
  12. 12.
    Lorenz, M.: Primitive ideals of group algebras of supersoluble groups. Math. Ann.225, 115–122 (1977)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Matsumura, H.: Commutative ring theory. (Camb. Stud. Adv. Math. Vol. 8) Cambridge: Cambridge University Press 1986MATHGoogle Scholar
  14. 14.
    McConnell, J.C., Robson J.C.: Noncommutative Noetherian rings. Chichester: Wiley 1987MATHGoogle Scholar
  15. 15.
    McConnell, J.C., Pettit, J.J.: Crossed products and multiplicative analogues of the Weyl algebras. J. Lond. Math. Soc., II. Ser.38, 47–55 (1988)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ribenboim, P.: The book of prime number records. Berlin Heidelberg New York: Springer, 1988MATHGoogle Scholar
  17. 17.
    Rowen, L.: Primitive ideals of algebras over uncountable fields. In: Malliavin, M.-P. (ed.) Séminaire d'Algèbre P. Dubreil et M.-P. Malliavin. (Lect. Notes Math., vol. 1404, pp. 322–345) Berlin Heidelberg New York: Springer 1989Google Scholar
  18. 18.
    Sharp, R.Y., Vàmos, P.: Baire's category theorem and prime avoidance in complete local rings. Arch. Math.44, 243–248 (1984)CrossRefGoogle Scholar
  19. 19.
    Smith, M.K.: Eigenvectors of automorphisms of polynomial rings in two variables. Houston J. Math.10, 559–573 (1984)MATHMathSciNetGoogle Scholar
  20. 20.
    Smith, S.P.: A class of algebras similar to the enveloping algebra ofsl(2). Trans. Am. Math. Soc.322, 285–314 (1990)MATHCrossRefGoogle Scholar
  21. 21.
    Smith, S.P.: Quantum groups. An introduction and survey for ring theorists In: Noncommutative Rings, MSRI Pub 24. Berlin Heidelberg New York: Springer 1992Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • David A. Jordan
    • 1
  1. 1.Department of Pure MathematicsUniversity of SheffieldSheffieldUK

Personalised recommendations