The Mathematical Intelligencer

, Volume 24, Issue 1, pp 22–30 | Cite as

Remembering A. S. Kronrod

  • E. M. Landis
  • I. M. Yaglom
  • Marjorie Senechal
Departments Mathematical Communities


Nauk SSSR Mathematical Intelligencer Monogenic Function Mathematical Community Differential Diagnostics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography: Publications of A.S. Kronrod

  1. 1.
    A. Kronrod,Sur la structure de l’ensemble des points de discontinuité d’une fonction dérivable en ses points de continuité (Russian), Bull. Acad. Sci. URSS, Sér. Math. [Izvestia Akad. Nauk SSSR] 1939, 569–578.Google Scholar
  2. 2.
    G.M. Adel’son-Vel’skiy and A.S. Kronrod,On a direct proof of the analyticity of a monogenic function (Russian), Dokl. Akad. Nauk SSSR (N.S.)50 (1945), 7–9.Google Scholar
  3. 3.
    G.M. Adel’son-Vel’skiy and A.S. Kronrod,On the level set of continuous functions possessing partial derivatives, Dokl. Akad. Nauk SSSR (N.S.) 50 (1945), 239–241.Google Scholar
  4. 4.
    G.M. Adel’son-Vel’skiy and A.S. Kronrod,On the maximum principle for an elliptic system, Dokl. Akad. Nauk SSSR (N.S.)50 (1945), 559–561.Google Scholar
  5. 5.
    A. Kronrod,On permutation of terms of numerical series (Russian), Rec. Math. [Mat. Sbornik] N.S.18 (60) (1946), 237–280.MathSciNetGoogle Scholar
  6. 6.
    A.S. Kronrod and E.M. Landis,On level sets of a function of several variables (Russian), Dokl. Akad. Nauk SSSR (N.S.) 58(1947), 1269–1272.MATHMathSciNetGoogle Scholar
  7. 7.
    A.S. Kronrod,On linear and planar variations of functions of several variables (Russian), Dokl. Akad. Nauk SSSR (N.S.)66(1949), 797–800.MATHMathSciNetGoogle Scholar
  8. 8.
    A.S. Kronrod,On a line integral (Russian), Dokl. Akad. Nauk SSSR (N.S.)66 (1949), 1041–1044.MATHMathSciNetGoogle Scholar
  9. 9.
    A.S. Kronrod,On surfaces of bounded area (Russian), Uspehi Mat. Nauk (N.S.)4 (1949), no. 5 (33), 181–182.MathSciNetGoogle Scholar
  10. 10.
    A.S. Kronrod,On functions of two variables, Uspehi Matem. Nauk (N.S.)5 (1950), no. 1 (35), 24–134.MATHMathSciNetGoogle Scholar
  11. 11.
    A.S. Kronrod,Numerical solution to the equation of the magnetic field in iron with allowance saturation, Soviet Physics Dokl.5(1960), 513–514.MathSciNetGoogle Scholar
  12. 12.
    A.S. Kronrod,Integration with control of accuracy, Soviet Physics Dokl.9 (1964), 17–19.MATHMathSciNetGoogle Scholar
  13. 13.
    A.S. Kronrod,Nodes and weights of quadrature formulas. Sixteen-place tables. Authorized translation from the Russian, Consultants Bureau, New York, 1965.Google Scholar
  14. 14.
    V.D. Belkin, A.S. Kronrod, U.A. Nazarov, and V.Y. Pan,The rational price calculation based on contemporary economic information, Akad. Nauk SSSR, Ekonomika i Maternaticeskie Metodi (1965) 1, no. 5, 699–717.Google Scholar
  15. 15.
    V.L. Arlazarov, A.S. Kronrod, and V.A. Kronrod,On a new type of computers. Dokl. Akad. Nauk SSSR (1966)171, no. 2, 299–301.Google Scholar
  16. 16.
    A.S. Kronrod, V.A. Kronrod, and I.A. Faradzvev,The choice of the step in the computation of derivatives (Russian), Dokl. Akad. Nauk SSSR194 (1970), 767–769. English translation in: Reports of the Academy of Sciences of the USSR 194, New York, 1970.MathSciNetGoogle Scholar
  17. 17.
    O.N. Golovin, G.M. Zislin, A.S. Kronrod, E.M. Landis, L.A. Ljusternik, and G.E. Šilov,Aleksandr Grigor’evič Sigalov. Obituary (Russian), Uspehi Mat. Nauk25 (1970), no. 5 (155), 227–234.MATHMathSciNetGoogle Scholar
  18. 18.
    A.S. Kronrod,The selection of the minimal confidence region (Russian), Dokl. Akad. Nauk SSSR20 (1972), 1036.MathSciNetGoogle Scholar
  19. 19.
    A.S. Kronrod,A nonmajorizable prescription for the choice of a confidence region for a given level of reliability (Russian), Dokl. Akad. Nauk SSSR208 (1973), 1026.MathSciNetGoogle Scholar
  20. 20.
    A.S. Kronrod,A nonmajorizable prescription for the selection of a confidence region of a certain form of target function (Russian), Dokl. Akad. Nauk SSSR210 (1973), 18–19.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2002

Authors and Affiliations

  1. 1.Department of MathematicsSmith CollegeNorthamptonUSA

Personalised recommendations