The Mathematical Intelligencer

, Volume 15, Issue 1, pp 10–19 | Cite as

Logic, sets, and mathematics

  • Paul C. Gilmore


Category Theory Atomic Formula Identity Relation Semantic Rule Existential Quantifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Beth, Semantic entailment and formal derivability,Mededelingen van de Koninklijke Nederlandse Akademie der Wetenschappen, Afdeling Letterkunde, Nieuwe Reeks, 18, no. 13 (1955), 309–342.MathSciNetGoogle Scholar
  2. 2.
    Alonzo Church,Introduction to Mathematical Logic, Princeton, NJ: Princeton University Press (1956), Footnote 136, p. 62.MATHGoogle Scholar
  3. 3.
    Joseph Dauben,Georg Cantor, His Mathematics and Philosophy of the Infinite, Cambridge, MA: Harvard University Press.Google Scholar
  4. 4.
    Solomon Feferman, Towards useful type-free theories, I,J. Symbol. Logic (March, 1984), 75-111.Google Scholar
  5. 5.
    Paul C. Gilmore, How many real numbers are there?, University of British Columbia Computer Science Department Technical Report 89-7, revised August, 1991.Google Scholar
  6. 6.
    Paul C. Gilmore, The consistency and completeness of an extended NaDSet, University of British Columbia Computer Science Department Technical Report 91-17, August, 1991.Google Scholar
  7. 7.
    Kurt Godel,The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies Number 3, Princeton, NJ: Princeton University Press (1940).Google Scholar
  8. 8.
    Mike Gordon, Why higher-order logic is a good formalism for specifying and verifying hardware, inFormal Aspects of VLSI Design (G. Milne and P. A. Subrahmanyam, eds.), Amsterdam: North-Holland (1986).Google Scholar
  9. 9.
    Mike Gordon, A proof generating system for higher-order logic, inVLSI specification, Verification and Synthesis (G. Birtwistle and P. Subrahmanyam, eds.), San Diego, CA: Academic Publishers (1988).Google Scholar
  10. 10.
    J. W. Gray (ed.),Mathematical Applications of Category Theory, Contemporary Mathematics, vol. 30, Providence, RI: American Mathematical Society (1984).Google Scholar
  11. 11.
    Jean van Heijenoort (ed.),From Frege to Godel, A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA: Harvard University Press (1967).Google Scholar
  12. 12.
    Stephen Cole Kleene,Introduction to Metamathematics, Amsterdam: North-Holland (1952).MATHGoogle Scholar
  13. 13.
    Saul Kripke, Outline of a theory of truth,J. Philosophy, 6 (1975), 690–716.Google Scholar
  14. 14.
    William F. Lawvere, The Category of Categories as a Foundation for Mathematics,Proceedings of a Conference on Categorical Algebras, Berlin: Springer-Verlag (1966), pp. 1–21.CrossRefGoogle Scholar
  15. 15.
    Yiannis Moshovakis,Descriptive Set Theory, Amsterdam: North-Holland (1980).MATHGoogle Scholar
  16. 16.
    Bertrand Russell,The Principles of Mathematics, Cambridge: Cambridge University Press (1903), Vol 1.MATHGoogle Scholar
  17. 17.
    Joseph R. Schoenfield,Mathematical Logic, Reading, MA: Addison-Wesley (1967).Google Scholar
  18. 18.
    Wilfred Sellars, Abstract entities,Rev. Metaphys., 16, 625- 671; Classes as abstract entities and the Russell paradox,Rev. Metaphys., 17, 67-90.Google Scholar
  19. 19.
    R. Smullyan,First Order Logic, Berlin: Springer-Verlag (1968).CrossRefMATHGoogle Scholar
  20. 20.
    Alfred Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen,Studia Philosophica, 1 (1936), 261–405. English translation appears inLogic, Semantics, Metamathematics, Papers from 1923 to 1938, Oxford: Oxford University Press (1956), 152–278.Google Scholar
  21. 21.
    George K. Tsiknis, Applications of a natural deduction based set theory, University of British Columbia Department of Computer Science PhD thesis, 1991.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1993

Authors and Affiliations

  • Paul C. Gilmore
    • 1
  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations