Advertisement

The Mathematical Intelligencer

, Volume 11, Issue 3, pp 73–79 | Cite as

Reviews

  • Chandler Davis
Department
  • 40 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    David H. Bailey, The computation of π to 29,360,000 decimal places using Borweins’ quartically convergent algorithm.Math. Comp. 50 (1988), 283–296.MathSciNetzbMATHGoogle Scholar
  2. 2.
    B. C. Berndt,Ramanujan’s Notebook, 3 vols. Part I. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag (1985).CrossRefGoogle Scholar
  3. 3.
    Jonathan M. Borwein and Peter B. Borwein, Ramanujan and Pi,Scientific American, February 1988, 112-117.Google Scholar
  4. 4.
    R. P. Brent, Fast multiple-precision evaluation of elementary functions,J. ACM 23 (1976), 242–251.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    W. Kaufmann-Bühler,Gauss, A Biographical Study, Berlin, Heidelberg, New York: Springer-Verlag (1981).Google Scholar
  6. 6.
    B. C. Carlson, Algorithms involving arithmetic and geometric means,Amer. Math. Monthly 78 (1971), 496–505.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Harvey Cohn, Introductory remarks on complex multiplication,Internat. J. Math. & Math. Sci. 5 (1982), 675–690.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D. A. Cox, The arithmetic geometric means of Gauss,L’Enseign. Math. (2) 30 (1984), 275–330.zbMATHGoogle Scholar
  9. 9.
    Harley Flanders, Algorithm of the bi-month: Computing π,College Math. J. 18 (1987), 230–235.CrossRefGoogle Scholar
  10. 10.
    C. F. Gauss,Werke, 12 vols. 1863-1933, Reprint, Hildesheim: Olms (1981).Google Scholar
  11. 11.
    H. Geppert, ed.Ostwalds Klassiker, #225, C. F.Gauss, Anziehung eines elliptischen Ringes, Leipzig: Akad. Verlag, (1927).zbMATHGoogle Scholar
  12. 12.
    G. H. Halphen, Traité des fonctions elliptiques et de leurs applications, 3 vols. Paris: Gauthier-Villars (1886-91).Google Scholar
  13. 13.
    G. H. Hardy,Ramanujan, Cambridge, (1940).Google Scholar
  14. 14.
    G. W. Hill, On Gauss’s method of computing secular perturbations, with an application to the action of Venus on Mercury, 1882.Collected Mathematical Papers, Memoir 37, vol. 2, 1-46.Google Scholar
  15. 15.
    F. Klein,Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, 2 vols., Berlin: Springer-Verlag, (1926).zbMATHGoogle Scholar
  16. 16.
    J. E. Littlewood,Littlewood’s Miscellany, ed. B. Bollobás, Cambridge, (1986).Google Scholar
  17. 17.
    I. Ninomiya, Best rational starting approximations and improved Newton iteration for square roots,Math. Comp. 24 (1970), 391–404.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    E. Salamin, Computation of π using Arithmetic—Geometric Mean,Math. Comp. 30 (1976), 565–570.MathSciNetzbMATHGoogle Scholar
  19. 19.
    John Todd, The many limits of mixed means, I, II, ISNM#41 (1978), 5-22 andNumer. Math. to appear.Google Scholar

References

  1. 1.
    Boethius,Boethian Number Theory (A translation of ‘De Institutione Arithmetica’ by Michael Masi), Amsterdam: Rodopi (1983).Google Scholar
  2. 2.
    Euclid,The Elements (translated by Sir Thomas L. Heath), New York: Dover Reprint (1956).Google Scholar
  3. 3.
    Gottfried Gruben,Die Tempel der Griechen Darmstadt: Wissenschaftliche Buchgesellschaft (1984).Google Scholar
  4. 4.
    Nicomachus of Gerasa,Introduction to Arithmetic (translated by M. L. D’Ooge), (F. E. Robbins and L. C. Karpinski, ed.), New York: (1926).Google Scholar
  5. 5.
    Plato,Opera (J. Burnet, ed.), Oxford: (1900-1907).Google Scholar
  6. 6.
    David Eugene Smith and Clara C. Eaton, Rithmomachia, the great medieval number game,The American Mathematical Monthly 18 (April 1911), 73–80.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1989

Authors and Affiliations

  • Chandler Davis
    • 1
    • 2
    • 3
  1. 1.Mathematics DepartmentUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsCaltechPasadena91125USA
  3. 3.Fachbereich Mathematik Schloßgartenstraße 7DarmstadtFederal Republic of Germany

Personalised recommendations