Advertisement

The Mathematical Intelligencer

, Volume 11, Issue 3, pp 40–47 | Cite as

Sphere and torus music

  • Dennis DeTurck
Article
  • 81 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bérard,Spectral geometry: Direct and inverse problems, Springer Lecture Notes 1207 (1986.)Google Scholar
  2. 2.
    M. Berger, P. Gauduchon, and E. Mazet,Le Spectre d’une Variété Riemannienne, Springer Lecture Notes 194 (1971).Google Scholar
  3. 3.
    R. Brooks, Constructing isospectral manifolds,Amer. Math. Monthly 95 (1988), 823–839.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Brooks and R. Tse, Isospectral surfaces of small genus,Nagoya Math J. 107 (1987), 13–24.MathSciNetGoogle Scholar
  5. 5.
    P. Buser, Isospectral Riemann surfaces,Ann. Inst. Fourier, Grenoble 36 (1986), 167–192.zbMATHMathSciNetGoogle Scholar
  6. 6.
    I. Chavel,Eigenvalues in riemannian geometry, New York: Academic Press (1984).zbMATHGoogle Scholar
  7. 7.
    Y. Colin de Verdière, Spectre du Laplacien et longeur des géodesiques périodiques II,Comp. Math. 27 (1973), 159–184.zbMATHGoogle Scholar
  8. 8.
    D. DeTurck and C. Gordon, Isospectral deformations: Part I,Comm. Pure Appl. Math. 40 (1987), 367–387; Part II, to appear inComm. Pure Appl. Math. zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. DeTurck, H. Gluck, C. Gordon, and D. Webb, You can’t hear the size of a homology class, to appear inComm. Math. Helv. Google Scholar
  10. 10.
    J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics,Inv. Math. 29 (1975), 39–79.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Gordon and E. Wilson, Isospectral deformations of compact solvmanifolds,J. Diff. Geom. 19 (1984), 241–256.zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Ikeda, On lens spaces which are isospectral but not isometric,Ann. Sci. Ec. Norm Sup. 13 (1980), 303–315.zbMATHGoogle Scholar
  13. 13.
    M. Kac, Can one hear the shape of a drum?,Amer. Math. Monthly 73 (1966), 1–23.CrossRefGoogle Scholar
  14. 14.
    —,Enigmas of chance, an autobiography, New York: Harper and Row (1985.zbMATHGoogle Scholar
  15. 15.
    J. Milnor, Eigenvalues of the Laplace operator on certain manifolds,Proc. Nat. Acad. Sci., U.S.A. 51 (1964), 542.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Sunada, Riemannian coverings and isospectral manifolds,Ann. of Math. (2) 121 (1985), 169–186.CrossRefMathSciNetGoogle Scholar
  17. 17.
    H. Urakawa, Bounded domains which are isospectral but not congruent,Ann. Sci. Ec. Norm. Sup. 15 (1982), 441–456.zbMATHMathSciNetGoogle Scholar
  18. 18.
    M. Vignéras, Variétés riemanniennes isospectrales et non isométriques,Ann. of Math. (2) 112 (1980), 21–32.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1989

Authors and Affiliations

  • Dennis DeTurck
    • 1
    • 2
  1. 1.Department of MathematicsWashington UniversitySt. LouisUSA
  2. 2.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations