The Mathematical Intelligencer

, Volume 11, Issue 3, pp 39–47 | Cite as

When you can’t hear the shape of a manifold

  • Carolyn S. Gordon


Manifold Riemannian Manifold Projective Space Smooth Manifold Mathematical Intelligencer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bérard,Spectral geometry: Direct and inverse problems, Springer Lecture Notes 1207 (1986.)Google Scholar
  2. 2.
    M. Berger, P. Gauduchon, and E. Mazet,Le Spectre d’une Variété Riemannienne, Springer Lecture Notes 194 (1971).Google Scholar
  3. 3.
    R. Brooks, Constructing isospectral manifolds,Amer. Math. Monthly 95 (1988), 823–839.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    R. Brooks and R. Tse, Isospectral surfaces of small genus,Nagoya Math J. 107 (1987), 13–24.MathSciNetMATHGoogle Scholar
  5. 5.
    P. Buser, Isospectral Riemann surfaces,Ann. Inst. Fourier, Grenoble 36 (1986), 167–192.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    I. Chavel,Eigenvalues in riemannian geometry, New York: Academic Press (1984).MATHGoogle Scholar
  7. 7.
    Y. Colin de Verdière, Spectre du Laplacien et longeur des géodesiques périodiques II,Comp. Math. 27 (1973), 159–184.MATHGoogle Scholar
  8. 8.
    D. DeTurck and C. Gordon, Isospectral deformations: Part I,Comm. Pure Appl. Math. 40 (1987), 367–387; Part II, to appear inComm. Pure Appl. Math. MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    D. DeTurck, H. Gluck, C. Gordon, and D. Webb, You can’t hear the size of a homology class, to appear inComm. Math. Helv. Google Scholar
  10. 10.
    J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics,Inv. Math. 29 (1975), 39–79.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    C. Gordon and E. Wilson, Isospectral deformations of compact solvmanifolds,J. Diff. Geom. 19 (1984), 241–256.MathSciNetMATHGoogle Scholar
  12. 12.
    A. Ikeda, On lens spaces which are isospectral but not isometric,Ann. Sci. Ec. Norm Sup. 13 (1980), 303–315.MATHGoogle Scholar
  13. 13.
    M. Kac, Can one hear the shape of a drum?,Amer. Math. Monthly 73 (1966), 1–23.CrossRefMATHGoogle Scholar
  14. 14.
    —,Enigmas of chance, an autobiography, New York: Harper and Row (1985.MATHGoogle Scholar
  15. 15.
    J. Milnor, Eigenvalues of the Laplace operator on certain manifolds,Proc. Nat. Acad. Sci., U.S.A. 51 (1964), 542.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    T. Sunada, Riemannian coverings and isospectral manifolds,Ann. of Math. (2) 121 (1985), 169–186.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    H. Urakawa, Bounded domains which are isospectral but not congruent,Ann. Sci. Ec. Norm. Sup. 15 (1982), 441–456.MathSciNetMATHGoogle Scholar
  18. 18.
    M. Vignéras, Variétés riemanniennes isospectrales et non isométriques,Ann. of Math. (2) 112 (1980), 21–32.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1989

Authors and Affiliations

  • Carolyn S. Gordon

There are no affiliations available

Personalised recommendations