The Mathematical Intelligencer

, Volume 24, Issue 3, pp 68–72 | Cite as

Can Two Wrongs Make a Right? Coin-Tossing Games and Parrondo’s Paradox

  • Ora E. Percus
  • Jerome K. Percus


Mathematical Intelligencer Limg Longe Unity Puzzle Solution Winning Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Doering, C.R. Randomly rattled ratchets,Nuovo Cim. D17 (1995), 685–697.CrossRefGoogle Scholar
  2. [2]
    Harmer, G.P., Abbot, D. Losing strategies can win by Parrondo’s paradox,Nature 402 (1999), 864.CrossRefGoogle Scholar
  3. [3]
    Harmer, G.P., Abbot, D. Parrondo’s paradox.Statistical Science,14(1999), 206–213.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    Harmer, G.P., Abbot, D., and Taylor, P.G. The paradox of Parrondo’s games.Proc. Ft. Soc. Lond. A 456 (2000), 247–259.CrossRefMATHGoogle Scholar
  5. [5]
    Klarreich, E. Playing Both Sides,The Sciences (2001), 25–29.Google Scholar
  6. [6]
    Parrondo, J.M.R., Harmer, G.P., Abbot, D. New paradoxical games based on Brownian ratchets,Phys. Rev. Lett. 85 (2000), 5226–5229.CrossRefGoogle Scholar
  7. [7]
    Saari, D.Decisions and Elections. Cambridge: Cambridge University Press (2001).CrossRefGoogle Scholar
  8. [8]
    Simpson, E.H. The Interpretation of Interaction in Contingency Tables,J. Roy. Stat Soc. B13 (1951), 238–241.Google Scholar
  9. [9]
    Takàcs, L.Stochastic processes. Methuen’s Monographs on Applied Probability and Statistics (1960).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2002

Authors and Affiliations

  • Ora E. Percus
    • 1
  • Jerome K. Percus
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew YorkUSA

Personalised recommendations