The Mathematical Intelligencer

, Volume 24, Issue 3, pp 21–33 | Cite as

Eight remarkable properties of capillary surfaces



Contact Angle Gravity Field Mathematical Intelligencer Liquid Bridge Potato Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Young: An essay on the cohesion of fluids.Philos. Trans. Roy. Soc. Lond. 95(1805), 65–87.CrossRefGoogle Scholar
  2. 2.
    P.S. Laplace:Traité de mécanique céleste: suppléments au Livre X, 1805 and 1806, resp. in Euvres Complètes Vol. 4. Gauthier-Villars, Paris. See also the annotated English translation by N. Bowditch (1839), reprinted by Chelsea, New York (1966).Google Scholar
  3. 3.
    C.F. Gauss: Principia Generalia Theoriae Figurae Fluidorum. Comment.Soc. Regiae Sclent. Gottingensis Rec. 7 (1830). Reprinted as Grundlagen einer Theorie der Gestalt von Flüssigkeiten im Zustand des Gleichgewichtes inOstwald’s Klassiker der Exakten Wissenschaften, vol. 135, W. Engelmann, Leipzig, (1903).Google Scholar
  4. 4.
    R. Finn: On the equations of capillarity.J. Mathem Fluid Mech,3 (2001), 139–151.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    T.I. Vogel: Uniqueness for certain surfaces of prescribed mean curvature.Pacific J. Math. 134 (1988), 197–207.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    P. Concus, R. Finn: On capillary free surfaces in the absence of gravity.Acta Math. 132 (1974), 177–198.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    R. Finn:Equilibrium Capillary Surfaces. Springer-Verlag, New York (1986). Russian translation (with Appendix by H.C. Wente) Mir Publishers (1988).CrossRefGoogle Scholar
  8. 8.
    B. Fischer, R. Finn: Non-existence theorems and measurement of capillary contact angle.Z Anal. Anwend. 12 (1993), 405–423.MATHMathSciNetGoogle Scholar
  9. 9.
    R. Finn, T.L. Leise: On the canonical proboscis.Z Anal. Anwend. 13 (1994), 443–462.MATHMathSciNetGoogle Scholar
  10. 10.
    R. Finn, J. Marek: The modified canonical proboscis.Z Anal. Anwend. 15 (1996), 95–108.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    P. Concus, R. Finn, M. Weislogel: Measurement of critical contact angle in a microgravity space experiment.Exps. Fluids 28 (2000), 197–205.CrossRefGoogle Scholar
  12. 12.
    M. Emmer: Esistenza, unicità e regolarità nelle superfici de equilibrio nei capillari.Ann. Univ. Ferrara 18 (1973), 79–94.MATHMathSciNetGoogle Scholar
  13. 13.
    R. Finn, C. Gerhardt: The internal sphere condition and the capillary problem.Ann. Mat. Pura Appl. (4)112 (1977), 13–31.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    R. Finn: The sessile liquid drop I: symmetric case.Pacific J. Math. 88 (1980), 541–587.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    R. Gulliver, S. Hildebrandt: Boundary configurations spanning continua of minimal surfaces.Manuscr. Math. 54 (1986), 323–347.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    R. Finn: Nonuniqueness and uniqueness of capillary surfaces.Manuscr. Math. 61 (1988), 347–372.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    P. Concus, R. Finn: Instability of certain capillary surfaces.Manuscr. Math. 63 (1989), 209–213.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    H.C. Wente: Stability analysis for exotic containers. Dynam. Contin. Discrete Impuls. Systems (Waterloo, ON, 1997).Dynam. Contin. Discrete Impuls. Systems 5 (1999), 151–158.MATHMathSciNetGoogle Scholar
  19. 19.
    J.E. Taylor: Boundary regularity for solutions to various capillarity and free boundary problems.Comm. P.D.E. 2 (1977), 323–357.CrossRefMATHGoogle Scholar
  20. 20.
    M. Callahan, P. Concus, R. Finn: Energy minimizing capillary surfaces for exotic containers (with accompanying videotape), inComputing Optimal Geometries, J.E. Taylor, ed., AMS Selected Lectures in Mathematics, American Mathematical Society, Providence, Rl (1991), 13–15.Google Scholar
  21. 21.
    P. Concus, R. Finn, M. Weislogel: Drop tower experiments for capillary surfaces in an exotic container.AIAA J. 30 (1992), 134–137.CrossRefGoogle Scholar
  22. 22.
    P. Concus, R. Finn, M. Weislogel: Capillary surfaces in an exotic container; results from space experiments.J. Fluid Mech. 394 (1999), 119–135.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    M. Athanassenas: A variational problem for constant mean curvature surfaces with free boundary.J. Reine Angew. Math. 377 (1987), 97–107.MATHMathSciNetGoogle Scholar
  24. 24.
    T.I. Vogel: Stability of a liquid drop trapped between two parallel planes II: general contact angles.SIAM J. Appl. Math. 49 (1989), 1009–1028.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    D. Langbein: Stability of liquid bridges between parallel plates.Microgr. Sci. Techn. 1 (1992), 2–11.Google Scholar
  26. 26.
    L.-M. Zhou: On stability of a catenoidal liquid bridge.Pacific J. Math. 178 (1997), 185–198.CrossRefMathSciNetGoogle Scholar
  27. 27.
    L.-M. Zhou: The stability of liquid bridges. Dissertation, Stanford Univ., 1996.Google Scholar
  28. 28.
    T.I. Vogel: Local energy minimality of capillary surfaces in the presence of symmetry.Pacific J. Math., to appear.Google Scholar
  29. 29.
    R. Finn, T.I. Vogel: On the volume infimum for liquid bridges.Z Anal. Anwend. 11 (1992), 3–23.MATHMathSciNetGoogle Scholar
  30. 30.
    P. Concus, R. Finn, J. McCuan: Liquid bridges, edge blobs, and Scherk-type capillary surfaces.Indiana Univ. Math. J. 50 (2001) 411–441.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    J. McCuan: Symmetry via spherical reflection and spanning drops in a wedge.Pacific J. Math. 180 (1997), 291–324.CrossRefMathSciNetGoogle Scholar
  32. 32.
    H.C. Wente: Tubular capillary surfaces in a convex body.Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 288–298. Internat. Press, Cambridge, MA (1995).Google Scholar
  33. 33.
    R. Finn, J. McCuan: Vertex theorems for capillary drops on support planes.Math. Nachr. 209 (2000), 115–135.CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    R. Finn, R.W. Neel: C-singular solutions of the capillary problem.J. Reine Angew. Math. 512 (1999), 1–25.CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    P. Concus, R. Finn: On the height of a capillary surface.Math. Z. 147 (1976), 93–95.CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    D. Siegel: Height estimates for capillary surfaces.Pacific J. Math. 88(1980), 471–516.CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    R. Finn, A.A. Kosmodem’yanskii, Jr.: Some unusual comparison theorems for capillary surfaces.Pacific J. Math., to appear.Google Scholar
  38. 38.
    R. Finn: A curious property of capillary surfaces.Ann. Univ. Ferrarra, to appear.Google Scholar
  39. 39.
    R. Finn: On partial differential equations whose solutions admit no isolated singularities.Scripta Math. 26 (1961), 107–115.MathSciNetGoogle Scholar
  40. 40.
    P. Concus, R. Finn: A singular solution of the capillary equation I: existence.Invent. Math. 29 (1975), 143–148.CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    M.-F. Bidaut-Veron: Global existence and uniqueness results for singular solutions of the capillarity equation.Pacific J. Math. 125 (1986), 317–334.CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    M.-F. Bidaut-Veron: Rotationally symmetric hypersurfaces with prescribed mean curvature.Pacific J. Math. 173 (1996), 29–67.MATHMathSciNetGoogle Scholar
  43. 43.
    P. Concus, R. Finn: The shape of a pendent liquid drop.Phil. Trans. Roy. Soc. London. Ser. A 292 (1979), 307–340.CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    R. Finn: Green’s identities and pendent liquid drops: I. Intl. Symp. Univ. Ferrara; inDevelopments in Partial Differential Equations and Applications in Mathematical Physics, ed. G. Buttazzo, G.P. Galdi, L Zanghirati. Plenum Press, London (1992), 39–58.CrossRefGoogle Scholar
  45. 45.
    R. Nickolov: Uniqueness of the singular solution to the capillary equation.Indiana Univ. Math. J. 51 (2002) to appear.Google Scholar
  46. 46.
    H.C. Wente: The stability of the axially symmetric pendent drop.Pacific J. Math. 88 (1980), 421–470.CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    R. Finn: Capillary surface interfaces.Notices Amer. Math. Soc. 46 (1999), 770–781.MATHMathSciNetGoogle Scholar
  48. 48.
    R. Finn: Some properties of capillary surfaces.Rend. Sem. Mat. Milano (in press).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2002

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations