The Mathematical Intelligencer

, Volume 17, Issue 3, pp 57–61 | Cite as

Et and an infinitary church’s thesis

  • Robert M. Baer


Cellular Automaton Turing Machine Recursive Function Normal Algorithm Local Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baer, R. M., Computability by normal algorithms,Proc. Am. Math. Soc. 20 (1969), 551–552.CrossRefMATHMathSciNetGoogle Scholar
  2. Davis, M.,Computability & Unsolvability, New York: McGraw- Hill (1958).MATHGoogle Scholar
  3. Davis, M., Why Gödei didn’t have Church’s Thesis,Inform. Control 54 (1982), 3–24.CrossRefMATHGoogle Scholar
  4. Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum computer,Proc. Roy. Soc. London Ser. A 400 (1985), 97–117.CrossRefMATHMathSciNetGoogle Scholar
  5. Fischler, W., Morgan, D., and Polchinski, J., Quantization of false-vacuum bubbles: a Hamiltonian treatment of gravitational tunneling,Phys. Rev. D 42 (1990), 4042–4055.CrossRefMathSciNetGoogle Scholar
  6. Gandy, R., The confluence of ideas in 1936, inThe Universal Turing Machine: A Half-Century Survey (R. Herken, ed.), Hamburg: Kammerer & Unverzagt (1988).Google Scholar
  7. Goodman, N. D., Intensions, Church’s thesis, and the formalization of mathematics,Notre Dame J. Formal Logic 28 (1987), 473–489.CrossRefMATHMathSciNetGoogle Scholar
  8. Kleene, S. C., Reflections on Church’s thesis,Notre Dame J. Formal Logic 28 (1987), 490–198.CrossRefMATHMathSciNetGoogle Scholar
  9. Kreisel, G., Church’s thesis and the ideal of formal rigour,Notre Dame J. Formal Logic 28 (1987), 499–519.CrossRefMATHMathSciNetGoogle Scholar
  10. Kreisel G., Church’s Thesis: a kind of reducibility axiom for constructive mathematics, inIntuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo, N.Y. (A. Kino, J. Myhill, R. E. Vesley, eds.), Amsterdam: North- Holland (1970).Google Scholar
  11. Lopez-Escobar, E. G. K., Remarks on an infinitary language with constructive formulas,J. Symbol. Logic 32 (1967), 305–318.CrossRefMATHMathSciNetGoogle Scholar
  12. Lopez-Escobar, E. G. K., Infinite rules in finite systems, inNon- classical Logics, Model Theory and Computability (A. I. Arruda, da N. C. A. Costa, and R. Chuaqui, eds.), Amsterdam: North-Holland (1977).Google Scholar
  13. Rosen, R., Church’s Thesis and its relation to the concept of realizability in biology and physics,Bull. Math. Biophys. 24 (1962), 375–393.CrossRefMATHGoogle Scholar
  14. Webb, J. C.,Mechanism, Mentalism, and Metamathematics, Dordrecht: Reidel (1980).CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Robert M. Baer
    • 1
  1. 1.Parallel Logic CorporationMill ValleyUSA

Personalised recommendations