The Mathematical Intelligencer

, Volume 15, Issue 4, pp 22–26 | Cite as

The heavenly spheres regained

  • Osmo Pekonen


Spherical Triangle Closed Bosonic String Flat Minkowski Spacetime Beatific Vision Medieval Theologian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Berger,Geometry I-II, Berlin-Heidelberg-New York: Springer-Verlag (1987).CrossRefMATHGoogle Scholar
  2. 2.
    L. Castellani, R. D’Auria, and P. Fré,Supergravity and superstrings: a geometric perspective I-II, Singapore: World Scientific (1991).Google Scholar
  3. 3.
    J. Cheeger and J. Simons,Differential Characters and Geometric Invariants, Lecture Notes in Mathematics No. 1167, Berlin-Heidelberg-New York: Springer-Verlag (1985).Google Scholar
  4. 4.
    Y. Colin de Verdière, Distribution de points sur une sphère (d’après Lubotzsky, Phillips et Sarnak), Séminaire Bourbaki, exposé 703,Astérisque 177-178 (1989), 83–93.Google Scholar
  5. 5.
    J. H. Conway, and N. J. A. Sloane,Sphere Packings, Lattices and Groups, Berlin-Heidelberg-New York: Springer-Verlag (1988).CrossRefMATHGoogle Scholar
  6. 6.
    J. Dieudonné,Pour l’honneur de l’esprit humain, Paris: Hachette (1987).MATHGoogle Scholar
  7. 7.
    P. Duhem,Medieval Cosmology: Theories of Infinity, Place, Time, Void, and the Plurality of Worlds, Chicago-London: The University of Chicago Press (1985).Google Scholar
  8. 8.
    C. S. Gordon, When you can’t hear the shape of a manifold,Mathematical Intelligencer 11(3) (1989), 39–47.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    S. W. Hawking, The edge of spacetime,American Scientist 72 (1984), 355–359.Google Scholar
  10. 10.
    S. Hildebrandt and A. Tromba,Mathematics and Optimal Form, New York: Scientific American Books (1985).Google Scholar
  11. 11.
    J. Horgan, Edward Witten, the Pied Piper of superstrings,Scientific American (November 1991), 18–20.Google Scholar
  12. 12.
    M. Kaku,Strings, Conformal Fields, and Topology, Berlin-Heidelberg-New York: Springer-Verlag (1991).CrossRefMATHGoogle Scholar
  13. 13.
    M. Karoubi,K-theory. An Introduction, Berlin-Heidelberg-New York: Springer-Verlag (1978).MATHGoogle Scholar
  14. 14.
    J. Milnor, Remarks on infinite dimensional Lie groups, inRelativity, Groups, and Topology II, Les Houches, Session XL, B. D. DeWitt and R. Stora, eds., Amsterdam: North-Holland (1986), pp. 1007–1057.Google Scholar
  15. 15.
    P. Oh and P. Ramond, Curvature of superDiff(S 1)/S1,Physics Letters B 195 (1987), 130–134.CrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Witten, Physics and geometry, inProceedings of the International Congress of Mathematicians, Berkeley, A. M. Gleason, ed., Providence, RI: American Mathematical Society (1987), pp. 267–303.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1993

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations