The Mathematical Intelligencer

, Volume 18, Issue 3, pp 32–39 | Cite as

The beginning of polish topology

  • Krzysztof CiesielskiEmail author
  • Zdzislaw PogodaEmail author


Mathematical Intelligencer General Topology Algebraic Topology Continuous Image Jordan Curve Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Arkhangelskii and L.S. Pontryagin (eds.),General Topology, vol. I, Springer-Verlag, New York: 1990.Google Scholar
  2. 2.
    R.H. Bing, Concerning hereditarily indecomposable continua,Pacific Journal of Mathematics 1 (1951), 43–520.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Engelking,General Topology, PWN, 1977.Google Scholar
  4. 4.
    R. Engelking, “P.S. Aleksandrow,”Wiadomosci Matematyczne 20 (1978), 174–177.zbMATHMathSciNetGoogle Scholar
  5. 5.
    R. Engelking and K. Sieklucki,Introduction to Topology, Amsterdam: North-Holland, 1994.Google Scholar
  6. 6.
    K. Hannabuss, Forgotten fractals,Mathematical Intelligencer 18, no. 3, 28–31.Google Scholar
  7. 7.
    Z. Janiszewski, O potrzebach matematyki w Polsce, in:Nauka Polska, Warszawa, Kasa im. Mianowskiego 1917: reprinted in:Wiadomosci Matematyczne, 7 (1963), 3–8.Google Scholar
  8. 8.
    Z. Janiszewski, O rozcinaniu plaszczyzny przez continua,Prace Matematyczno-Fizyczne 26 (1913), 11–63.Google Scholar
  9. 9.
    Z. Janiszewskil, Sur les continus irréductibles entre deux points,Comptes Rendus Paris (1911), 752-755.Google Scholar
  10. 10.
    Z. Janiszewski, Über die Begriffe “Linie” und “Fläche,”International Congress of Mathematicians, Cambridge, 1912.Google Scholar
  11. 11.
    B. Knaster, Un continu dont tout sous-continu est indécomposable,Fundamenta Mathematicae 3 (1922), 247–286.zbMATHGoogle Scholar
  12. 12.
    B. Knaster and K. Kuratowski, Sur les ensembles connexes,Fundamenta Mathematicae 2 (1921), 206–255.zbMATHGoogle Scholar
  13. 13.
    K. Kuratowski,Notatki do autobiografii, Czytelnik, Warszawa, 1981.Google Scholar
  14. 14.
    K. Kuratowski,Pót wieku matematyki polskiej, Wiedza Powszechna, Warszawa, 1977.Google Scholar
  15. 15.
    K. Kuratowski, S. Mazurkiewicz et son oeuvre scientifique,Fundamenta Mathematicae 34 (1947), 316–331.MathSciNetGoogle Scholar
  16. 16.
    K. Kuratowski,Topologie, vol. I, Warszawa, 1933.Google Scholar
  17. 17.
    K. Kuratowski,Topologie, vol. II, Warszawa, 1950.Google Scholar
  18. 18.
    K. Kuratowski and W. Sierpiński, Les fonctions de classe 1 et les ensembles connexes punctiformes,Fundamenta Mathematicae 3 (1922), 303–313.zbMATHGoogle Scholar
  19. 19.
    A. Lelek,Zbiory, Warszawa, PZWS, Warszawa, 1966.Google Scholar
  20. 20.
    S. Mazurkiewicz, O arytmetyzacji continuów,Comptes Rendus Varsovie 6 (1913), 305–311.Google Scholar
  21. 21.
    S. Mazurkiewicz, Sur les continus absolument indécomposables,Fundamenta Mathematicae 16 (1930), 151–159.zbMATHGoogle Scholar
  22. 22.
    S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables,Fundamenta Mathematicae 1 (1920), 17–27.zbMATHGoogle Scholar
  23. 23.
    E.E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua,Trans. American Mathematical Society 63 (1948), 581–594.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    A. Schinzel, Rola Waclawa Sierpińskiego w historii matematyki polskiej,Wiadomosci Matematyczne 26 (1984), 1–9.zbMATHMathSciNetGoogle Scholar
  25. 25.
    W. Sierpiński,Oeuvres Choisies, vols. I, II, PWN, Warszawa, 1974Google Scholar
  26. 26.
    W. Sierpiński, Sur une condition pour qúun continu soit une courbe jordanienne,Fundamenta Mathematicae 1 (1920), 44–60.Google Scholar
  27. 27.
    W. Sierpiński, Sur la décomposition du plan en deux ensembles punctiformes,Bulletin International de ĽAcadémie des Sciences de Cracovie, Ser. A (1913), 76–82.Google Scholar
  28. 28.
    W. Sierpiński, O krzywej, której kazdy punkrjest punktem rozgale-zienia (Sur une courbe dont tout point est un point de ramification),Prace Matematyczno-Fizyczne 27 (1916), 77–85.zbMATHGoogle Scholar
  29. 29.
    W. Sierpiński, O krzywych, wypelniajacych kwadrat (Sur les courbes qui remplissent un carré),Prace Matematyczno-Fizyczne 23 (1912) 193–219.zbMATHGoogle Scholar
  30. 30.
    W. Sierpiński, Sur les ensembles connexes et non connexes,Fundamenta Mathematicae 2 (1921), 81–95.zbMATHGoogle Scholar
  31. 31.
    W. Sierpiński, Sur une courbe dont tout point est un point de ramification,Comptes Rendus Paris 160 (1915), 302–305.zbMATHGoogle Scholar
  32. 32.
    W. Sierpiński, Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée,Comptes Rendus Paris 172 (1916), 629–632.Google Scholar
  33. 33.
    W. Sierpiński, Sur une nouvelle courbe continue quelconque,Bulletin International de ĽAcademie des Sciences de Cracovie, Ser. A (1912), 462–478.Google Scholar
  34. 34.
    W. Sierpiński, Sur un ensemble punctiforme connexe,Fundamenta Mathematicae 1 (1920), 7–10.zbMATHGoogle Scholar
  35. 35.
    W. Sierpiński, Un théorème sur les ensembles fermés,Bulletin International de ĽAcadémie des Sciences de Cracovie, Ser. A (1918), 49-51.Google Scholar
  36. 36.
    W. Sierpiński, Un théoreme sur les continus,Tôhoku Mathematics Journal 13 (1918), 300–303.zbMATHGoogle Scholar
  37. 37.
    L.A. Steen and J.A. Seebach Jr.,Counterexamples in Topology, New York: Springer-Verlag, 1978.CrossRefzbMATHGoogle Scholar
  38. 38.
    I. Stewart, Four encounters with Sierpinskís gasket,Mathematical Intelligencer 17, no. 1, 52–64.Google Scholar
  39. 39.
    G. Temple, 100Years of Mathematics, Duckworth, London, 1981.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1996

Authors and Affiliations

  1. 1.Mathematics Institute Jagiellonian UniversityKrakowPoland

Personalised recommendations