Advertisement

The Mathematical Intelligencer

, Volume 18, Issue 3, pp 28–31 | Cite as

Forgotten fractals

  • Keith Hannabuss
Article

Keywords

Planar Version Smith Normal Form Subsequent Division Middle Piece Linear Diophantine Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.E. Barnsley,Fractals everywhere, Academic Press, 2nd edition, 1993; p88.Google Scholar
  2. 2.
    C. Celléiier, “Note sur les principes fondamentaux de ľ” analyse,“Bull, des Sci. Math. (2)14 (1890), 142–60.Google Scholar
  3. 3.
    G. Cantor, “Grundlagen einer allgemeinen Mannigfal-tigkeitslehre, ”Math. Annalen 21 (1883), 545–591.CrossRefMathSciNetGoogle Scholar
  4. 4.
    J-L. Chambert, “Un demi-siècle des fractales 1870-1890,”Hist. Math. 17 (1990), 339–65.CrossRefGoogle Scholar
  5. 5.
    P. du Bois-Reymond, “Versuch einer Classification der willkürlichen Functionen reeller Argumenten in den kleinsten Intervallen,”J. F. reine u. angew. Math. 79 (1875), 21–37.Google Scholar
  6. 6.
    F.G. Frobenius, “Theorie der linearen Formen mit ganzen Coefficienten,”J.F. reine u. angew. Math. 86 (1879), 146–208.Google Scholar
  7. 7.
    F.G. Frobenius & L. Stickelberger, “Über Gruppen von vertauschbaren Elementen,”J. F. reine u. angew. Math. 86 (1879), 217–262.Google Scholar
  8. 8.
    K.C. Hannabuss,“Henry Smith” inOxford Figures, ed. J. Fauvel, R. Flood, and R.J. Wilson, Oxford, to appear.Google Scholar
  9. 9.
    T. Hawkins,Lebesgués theory of integration; its origins and development, Chelsea, 1970.Google Scholar
  10. 10.
    M. Jasek, “Über den wissenschaftlichen Nachlass Bernhard Bolzanos,”Jahresbericht der deutschen Mathematiker-Vereinigung 31 (1922), 109–110.Google Scholar
  11. 11.
    H. v. Koch, “Sur une courbe continue sans tangente, obtenue par une construction géometrique élémentaire,” Ark.F. Mat. Astron. o. Fys. 1 (1904), 681–704, and “Une méthode géométrique élémentaire pour ľétude de certaines questions de la théorie des courbes planes,”Acta Math. 30 (1906), 145-174.MATHGoogle Scholar
  12. 12.
    C. Reid, Hilbert, Springer, 1970; p. 12.Google Scholar
  13. 13.
    G.B. Riemann, “Über die Darstellbarkeit einer Function durch einer trigonometrische Reihe,”Abh. der Ges. der Wiss. zu Gött. 13 (1868), 87–132 (based onHabilitationsschrift of 1854).Google Scholar
  14. 14.
    W. Sierpiński, “Sur une courbe dont tout point est un point de ramification,”Comptes Rendus (Paris) 160 (1915), 302.MATHGoogle Scholar
  15. 15.
    W. Sierpiński, “Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée,”Comptes Rendus (Paris) 162 (1916), 629.MATHGoogle Scholar
  16. 16.
    H.J.S. Smith, “On systems of linear indeterminate equations and congruences,”Phil. Trans. Roy Soc. 101 (1861), 1293–326;Collected Mathematical Papers, 12.Google Scholar
  17. 17.
    H.J.S. Smith, “On the orders and genera of quadratic forms containing more than three indeterminates,”Proc. Roy. Soc. 16 (1867), 197–208;Collected Mathematical Papers, 18.CrossRefGoogle Scholar
  18. 18.
    H.J.S. Smith, “On the integration of discontinuous functions,”Proc. London Math. Soc. 6 (1875), 140–153;Collected Mathematical Papers, 25.MATHGoogle Scholar
  19. 19.
    I. Stewart,Does God play dice?, Blackwell, 1989.Google Scholar
  20. 20.
    I. Stewart, “Four encounters with Sierpińskís gasket,”Math. Intelligencer 17 (1995), no. 1, 52–64.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1996

Authors and Affiliations

  • Keith Hannabuss
    • 1
  1. 1.Balliol College OxfordEngland

Personalised recommendations