The Mathematical Intelligencer

, Volume 13, Issue 2, pp 34–43 | Cite as

Information-Based complexity: New questions for mathematicians

  • J. F. Traub
  • H. Woźniakowski


Combinatorial Complexity Positive Definiteness Average Assurance Multivariate Integration Large Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Traub, G. W. Wasilkowski and H. Woéniakowski,Information-Based Complexity, New York: Academic Press (1988).MATHGoogle Scholar
  2. 2.
    E. W. Packel and H. Wozniakowski, Recent developments in information-based complexity,Bull. Amer. Math. Soc. (2) 17 (1987), 9–36.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    L. Blum, M. Shub and S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines,Bull. Amer. Math. Soc. (2) 21 (1989), 1–46.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    J. F. Traub and H. Woźniakowski,A General Theory of Optimal Algorzthms, New York: Academic Press (1980).Google Scholar
  5. 5.
    G. W. Wasilkowski, A clock synchronization problem with random delays,J. Complexity 5 (1989), 1–11.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: W. H. Freeman and Company (1979).MATHGoogle Scholar
  7. 7.
    M. O. Rabin, Probabilistic algorithms,Algorithms and Complexity: New Directwns and Recent Results, (J. F. Traub, ed.) New York: Academic Press (1976), pp. 21–39.Google Scholar
  8. 8.
    N. S. Bakhvalov, On approximate computation of integrals (in Russian),Vestnik MGV, Ser. Math. Mech. Astron. Phys. Chem. 4 (1959), 3–18.Google Scholar
  9. 9.
    A. Papageorgiou,Average Case Complexity Bounds for Continuous Problems, Ph.D. Thesis, Dept. of Computer Science, Columbia University, 1989.Google Scholar
  10. 10.
    H. Woźniakowski, Average-case complexity of multivariate integration, to appear inBull. Amer. Math. Soc Google Scholar
  11. 11.
    M. A. Kowalski and W. Sielski, Approximation of smooth periodic functions in several variables,J. Complexity 4 (1988), 356–372.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    S. Graf, E. Novak and A. Papageorgiou, Bisection is not optimal on the average,Numer. Math. 55 (1989), 481–491.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    T. Jackowski, Compleraty of multilinear problems in the average case setting,J. Complexity (to appear).Google Scholar
  14. 14.
    A. S. Nemirovsky and D. B. Yudin,Problem Complexzty and Method Efficzency m Optimization, New York: Wiley-Interscience (1983).Google Scholar
  15. 15.
    J. F. Traub and H. Woźniakowski, On the optimal solution of large linear systems,J. Assoc. Comput. Mach. 31 (1984), 545–559.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    A. W. Chou, On the optimality of Krylov information,J. Complexity 3 (1987), 26–40.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    M. O. Rabin, Solving linear equations by means of scalar products,Complexlty of Computer Computations, (R. E. Miller and J. W. Thatcher, eds.) New York: Plenum (1972), 11–20.CrossRefGoogle Scholar
  18. 18.
    A. Bojaficzyk, Complexity of solving linear systems in different models of computation,SIAM J. Comput. 21 (1984), 591–603.Google Scholar
  19. 19.
    A. M. Ostrowski, On two problems in abstract algebra connected with Homer's rule,Studies Presented to R. von Mises, New York: Academic Press (1954), 40–48.Google Scholar
  20. 20.
    V. Ya. Pan, On methods of computing polynomial values,Russian Mathematical Surveys 21 (1966), 105–137.CrossRefGoogle Scholar
  21. 21.
    V. Strassen, Gaussian elimination is not opbmal,Numer. Math. 13 (1969), 354–356.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    V. Pan, How to multiply matrices fast,Lecture Notes in Computer Sczence, vol. 179. Berlin: Springer-Verlag (1984).Google Scholar
  23. 23.
    D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progression,Proceedings of the Nineteenth ACM Symp. on Theor. of Comp., New York (1987), 1–6.Google Scholar
  24. 24.
    J. F. Traub and H. Woźniakowski, Complexity of Linear Programming,Oper. Res. Lett. 1 (1982), 59–61.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1991

Authors and Affiliations

  • J. F. Traub
    • 1
  • H. Woźniakowski
    • 2
  1. 1.Department of Computer ScienceColumbia UniversityNew YorkUSA
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations