Advertisement

The Mathematical Intelligencer

, Volume 10, Issue 1, pp 27–32 | Cite as

Regular polyhedra with hidden symmetries

  • Jürgen Bokowski
  • Jörg M. Wills
Article

Keywords

Riemann Surface Hide Symmetry Regular Polyhedron Oriented Matroids Platonic Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jürgen Bokowski, A geometric realization without self- intersections does exist for Dyck’s regular map,Discrete and Computational Geometry, to appear.Google Scholar
  2. [2]
    Jürgen Bokowski, Aspects of computational synthetic geometry: II. Combinatorial complexes and their geometric realization—an algorithmic approach,Proceedings of Computer-Aided Geometric Reasoning, INRIA, Antibes (France) (1987).Google Scholar
  3. [3]
    Jürgen Bokowski and Jörg M. Wills, Computer-film on „Regular polyhedra with hidden symmetries.„Apollo- Domain, Frankfurt (1987).Google Scholar
  4. [4]
    Ulrich Brehm, Maximally symmetric realizations of Dyck’s regular map,Mathematika, to appear.Google Scholar
  5. [5]
    H. S. M. Coxeter, The abstract groups Gm„,P,Trans. Amer. Math. Soc. 45 (1939), 73–150.MathSciNetGoogle Scholar
  6. [6]
    H. S. M. Coxeter, Regular skew polyhedra in 3 and 4 dimensions,Proc. London Math. Soc. 2 (43) (1937), 33–62.MathSciNetGoogle Scholar
  7. [7]
    H. S. M. Coxeter and W. O. J. Moser,Generators and Relations for Discrete Groups, Berlin: Springer-Verlag (1980), 4th ed.CrossRefGoogle Scholar
  8. [8]
    Walther Dyck, Notiz über eine reguläre Riemannsche Fläche vom Geschlecht 3 und die zugehörige Normalkurve 4. Ordnung,Math. Ann. 17 (1880), 510–516.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Jeremy Gray, From the history of a simple group,The Mathematical Intelligencer 4 (1982), 59–66.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    Branko Grünbaum, Regular polyhedra—old and new,Aequat. Math. 16 (1977), 1–20.CrossRefMATHGoogle Scholar
  11. [11]
    Branko Grünbaum and Geoffrey C. Shephard, Duality of polyhedra,Shaping Space, Senechal and Fleck, ed., to appear.Google Scholar
  12. [12]
    Felix Klein, Über die Transformation siebenter Ord- nung der elliptischen Functionen,Math. Ann. 14 (1879), 428–471 (slightly revised version in: Gesammelte Math. Abh., 3. Band, Springer, Berlin, 1923).CrossRefMATHGoogle Scholar
  13. [13]
    Peter McMullen, Egon Schulte, and Jörg M. Wills, Infinite series of combinatorially regular polyhedra in three-space,Geom. Dedic, to appear.Google Scholar
  14. [14]
    Peter McMullen, Christoph Schulz, and Jörg M. Wills, Polyhedral 2-manifolds in E3 with unusually large genus,Israel. Math. 46 (1983), 127–144.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    Gerhard Ringel, Über drei Probleme am n-dimensio- nalen Würfel und Würfelgitter,Abh. Math. Sem. Univ. Hamburg 20 (1955), 10–19.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Bernd Sturmfels, Aspects of computational synthetic geometry: I. Algorithmic coordinatization of matroids,Proceedings of Computer-Aided Geometric Reasoning, INRIA, Antibes (France) (1987).Google Scholar
  17. [17]
    Egon Schulte and Jörg M. Wills, A polyhedral realization of Felix Klein’s map {3,7}8 on a Riemann surface of genus 3, /.London Math. Soc. 2 (32) (1985), 539–547.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Egon Schulte and Jörg M. Wills, On Coxeter’s regular skew polyhedra,Discrete Math. 60 (1986), 253–262.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    W. Threlfall, Gruppenbilder,Abh. math. phys. Klasse Sachs. Akad. Wiss. 41 (1930), 1–59.Google Scholar
  20. [20]
    Jörg M. Wills, The combinatorially regular polyhedra of index 2,Aequat. Math., to appear.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jürgen Bokowski
    • 1
  • Jörg M. Wills
    • 2
  1. 1.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtFederal Republic of Germany
  2. 2.Fachbereich MathematikUniversity SiegenSiegenFederal Republic of Germany

Personalised recommendations