Advertisement

The Mathematical Intelligencer

, Volume 13, Issue 3, pp 6–11 | Cite as

Years ago

  • Karen V. H. Parshall
Department

Keywords

Mathematical Logic Axiom System Incompleteness Theorem General Recursive Function Infinitary Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jon Barwise, Infinitary logics,Modern Logic—A Survey (E. Agazzi ed.), Dordrecht: D. Reidel (1980), 3–112.Google Scholar
  2. 2.
    Alonzo Church, A set of postulates for the foundation of logic,Annals of Mathematics 33 (1932), 346–366.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Alonzo Church, A set of postulates for the foundation of logic (Second Paper),Annals of Mathematics 34 (1933), 839–864.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    John W. Dawson, Jr., The reception of Gödel’s incompleteness theorems,PSA 1984: Proceedings of the 1984 Biennial Meeting of the Philosophy of Science Association (East Lansing, MI: Philosophy of Science Association) 2 (1985), 253–271.Google Scholar
  5. 5.
    John W. Dawson, Completing the Gödel-Zermelo correspondence,Historia Mathematica 12 (1985), 66–70.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Abraham A. Fraenkel, Zu den Grundlagen der Mengenlehre, Jahresberichtder Deutschen Mathematiker-Vereinigung 31,Angelegenheiten (1922), 101–102.Google Scholar
  7. 7.
    Kurt Gödel, Über die Vollständigkeit des Logikkalküls (doctoral dissertation); submitted (1929); published and translated in his [12].Google Scholar
  8. 8.
    Kurt Gödel, Die Vollständigkeit der Axiome des logischen Funktionenkalküls,Monatshefte für Mathematik und Physik 37 (1930), 349–360.CrossRefMATHGoogle Scholar
  9. 9.
    Kurt Gödel, Einige metamathematische Resultate über Entscheidungsdefinitheit und Widerspruchsfreiheit,Anzeiger der Akademie der Wissenschaften in Wien 67 (1930), 214–215,MATHGoogle Scholar
  10. 10.
    Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I,Monatshefte für Mathematik und Physik 38 (1931), 173–198.CrossRefGoogle Scholar
  11. 11.
    Kurt Gödel, Review of [21],Zentralblatt für Mathematik und ihre Grenzgebiete 2 (1933), 146.Google Scholar
  12. 12.
    Kurt Gödel,Collected Works, vol. 1 (Solomon Feferman, John W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay, and Jean van Heijenoort, eds.)/ New York: Oxford University Press (1986).Google Scholar
  13. 13.
    Ivor Grattan-Guinness, In memoriam Kurt Gödel: his 1931 correspondence with Zermelo on his incompletability theorem,Historia Mathematica 6 (1979), 294–304.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ivor Grattan-Guinness, On the development of logics between the two world wars,American Mathematical Monthly 88 (1981), 495–509.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    David Hilbert,Grundlagen der Geometric Leipzig: Teubner (1899).Google Scholar
  16. 16.
    David Hilbert, Mathematical Problems. Lecture Delivered before the International Congress of Mathematicians at Paris in 1900,Bulletin of the American Mathematical Society 8 (1902), 437–479.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    David Hilbert, Probleme der Grundlegung der Mathematik,Atti del Congresso internazionale dei matematici, Bologna 3-10 settembre 1928, 1 (1929), 135–141.Google Scholar
  18. 18.
    David Hilbert and Wilhelm Ackermann,Grundzüge der theoretischen Logik, Berlin: Springer (1928).MATHGoogle Scholar
  19. 19.
    David Hilbert and Paul Bernays,Grundlagen der Mathematik, vol. 1, Berlin: Springer (1934).Google Scholar
  20. 20.
    Douglas R. Hofstadter,Gödel, Escher, Bach: An Eternal Golden Braid, New York: Basic Books (1979).Google Scholar
  21. 21.
    Edward V. Huntington, “A complete set of postulates for the theory of absolute continuous magnitude,Transactions of the American Mathematical Society 3 (1902), 264–279.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Edward V. Huntington, A new set of independent postulates for the algebra of logic with special reference to Whitehead and Russell’sPrincipia Mathematica, Proceedings of the National Academy of Sciences, U.S.A. 18 (1932), 179–180.CrossRefGoogle Scholar
  23. 23.
    Stephen C. Kleene, Origins of recursive function theory,Annals of the History of Computing 3 (1981), 52–67.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Stephen C. Kleene and J. Barkley Rosser, The inconsistency of certain formal logics,Annals of Mathematics (2) 36 (1935), 630–636.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Georg Kreisel and Kurt Gödel, 28 April 1906—14 January 1978,Biographical Memoirs of Fellows of the Royal Society 26 (1980), 148–224.CrossRefGoogle Scholar
  26. 26.
    Gregory H. Moore, Beyond first-order logic: The historical interplay between mathematical logic and axiomatic set theory,History and Philosophy of Logic 1 (1980), 95–137.CrossRefGoogle Scholar
  27. 27.
    Gregory H. Moore, The emergence of first-order logic,History and Philosophy of Modern Mathematics (William Aspray and Philip Kitcher, eds.), Minneapolis: University of Minnesota Press (1988), 95–135.Google Scholar
  28. 28.
    Gregory H. Moore, Proof and the infinite,Interchange 21 (1990), 46–60.CrossRefGoogle Scholar
  29. 29.
    Gregory H. Moore, Gödel, Kurt,Dictionary of Scientific Biography, Supplement II (1990), 348–357. (C. C. Gillispie, ed.) New York: Charles Scribner’s Sons.Google Scholar
  30. 30.
    J. Barkley Rosser, Extensions of some theorems of Gödel and Church,Journal of Symbolic Logic 1 (1936), 87–91.CrossRefGoogle Scholar
  31. 31.
    Dirk van Dalen, The war of the frogs and the mice, or the crisis of theMathematische Annalen, The Mathematical Intelligencer 12 (4) (1990), 17–31.CrossRefMATHGoogle Scholar
  32. 32.
    Oswald Veblen, Remarks on the foundations of geometry,Bulletin of the American Mathematical Society 31 (1925), 121–141.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Ernst Zermelo, Über den Begriff der Definitheit in der Axiomatik,Fundamenta Mathematicae 14 (1929), 339–344.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York 1991

Authors and Affiliations

  • Karen V. H. Parshall
    • 1
  1. 1.Departments of Mathematics and HistoryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations