Ocean Science Journal

, Volume 40, Issue 1, pp 25–44 | Cite as

Long-term and real-time monitoring system of the East/Japan sea

  • Kuh Kim
  • Yun Bae Kim
  • Jong Jin Park
  • SungHyun Nam
  • Kyung-Ae Park
  • Kyung-Il Chang


Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-term current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Key words

real-time monitoring cable voltage measurement ARGO float ESROB current meter mooring the East Sea satellite data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chang, K.-I., Y.-B. Kim, M.-S. Suk, and S.-K. Byun. 2002a. Hydrography around Dokdo.Ocean and Polar Res.,24, 369–389.Google Scholar
  2. Chang, K.-I., N.G. Hogg, M.-S. Suk, S.-K. Byun, Y.-G. Kim, and K. Kim. 2002b. Mean flow and variability in the southwestern East Sea.Deep-Sea Res. Part I,49, 2261- 2279.CrossRefGoogle Scholar
  3. Chang, K.-I., W.J. Teague, S.J. Lyu, H.T. Perkins, D.-K. Lee, D.R. Watts, Y.-B. Kim, D.A. Mitchell, C.M. Lee, and K. Kim. 2004. Circulation and currents in the southwestern East/Japan Sea: Overview and review.Prog. Oceanogr.,61, 105–156.CrossRefGoogle Scholar
  4. Cornillon, P. C. and K.-A. Park. 2001. Warm core ring velocity inferred from NSCAT.Geophys. Res. Lett.,28, 575–578.CrossRefGoogle Scholar
  5. Csanady, G. T. 1984. Circulation in the coastal ocean. D. Reidel Publishing Co., Holland.Google Scholar
  6. Freilich, M. H. 1997. Validation of vector magnitude datasets: effects of random component errors.J. Atmos. Oceanic. Tech.,14, 695–703.CrossRefGoogle Scholar
  7. Hogan, P. J. and H. E. Hullbert. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/ East Sea models with 1/8° to 1/64° resolution.J. Phys. Oceanogr.,30, 2535–2561.CrossRefGoogle Scholar
  8. Holloway, G., T. Sou, and M. Eby. 1995. Dynamics of circulation of the Japan Sea.J. Mar. Res.,53, 539–569.CrossRefGoogle Scholar
  9. Kim, C. H. and K. Kim. 1983. Characteristics and origin of the cold water mass along the east coast of Korea.J. Korean Soc. Oceanogr.,18(1), 73–83.Google Scholar
  10. Kim, C.-H. and J.-H. Yoon. 1999. A numerical modeling of the upper and the intermediate layer circulation in the East Sea.J. Oceanogr.,55, 327–345.CrossRefGoogle Scholar
  11. Kim, D.-J, W.M. Moon, S.H. Nam, and K. Kim. 2003. Evaluation of ENVISAT ASAR data for measurement of surface wind field over the Korean east coast.Proc. IGARSS 2003.Google Scholar
  12. Kim, H. R., S. Ahn, and K. Kim. 2001. Observations of highly nonlinear internal solitons generated by near-inertial internal waves off the east coast of Korea.Geophys. Res. Lett.,28(16), 3191–3194.CrossRefGoogle Scholar
  13. Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, J.-Y. Chung, B.-H. Choi, S.-K. Byun, G.-H. Hong, M. Takematsu, J.-H. Yoon, Y. Volkov, and M. Danchenkov. 1996. New findings from CREAMS observations: Water masses and eddies in the East Sea.J. Korean Soc. Oceanogr.,31, 155–163.Google Scholar
  14. Kim, K., Y. G. Kim, K.-W. Kim, and H. Ossi. 1999.Real-time ocean buoy off the east coast of Korea. p. 1–6. In:Proc. Int. Sym. Prog. Coastal Eng. Oceanogr. Seoul, Korea.Google Scholar
  15. Kim, K., K.-R. Kim, D.-H. Min, Y. Volkov, J.-H. Yoon, and M. Takematsu. 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans?Geophys. Res. Lett.,28(17), 3293–3296.CrossRefGoogle Scholar
  16. Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, D.-J. Kang, M. Takematsu, and Y. Volkov. 2004a. Water masses and decadal variability in the East Sea (Sea of Japan).Prog. Oceangr.,61, 157–174.CrossRefGoogle Scholar
  17. Kim, K., S. J. Lyu, Y. - G. Kim, B. H. Choi, K. Taira, H. T. Perkins, W. J. Teague, and J. W. Book. 2004b. Monitoring Volume Transport through Measurement of Cable Voltage across the Korea Strait.J. Atmos. Ocean. Tec.,21, 671–682.CrossRefGoogle Scholar
  18. Kim, K., S. H. Nam, D. -J. Kim, K.-W. Kim, H. Ossi, Y.-G. Kim, and J.-W. Seo. 2004c. Real-time wave measurement using an ocean monitoring buoy. p. 83-92. In:Workshop on wave, tide observation and modeling in the Asian-Pacific Region.Google Scholar
  19. Kim, Y.-G. and K. Kim. 1999. Intermediate Waters in the East/ Japan Sea.J. Oceanogr.,55, 123–132.CrossRefGoogle Scholar
  20. Kim, Y.-G., K. Kim, Y.-K. Cho, and H. Ossi. 2000. CTD data processing for CREAMS expeditions: Thermal-lag correction of Sea-Bird CTD.J. Korean Soc. Oceanogr.,35(4), 192–199.Google Scholar
  21. Kobayashi T, Y. Ichikawa, Y. Takatsuki, T. Suga, N. Iwasaka, K. Ando, K. Mizuno, N. Shikama, and K. Takeuchi. 2001. Quality control of ARGO data based on high quality climatological dataset (HydroBase). I. ARGO Technical Report, FY2001, 36–48.Google Scholar
  22. Larsen, J. C. 1992. Transport and heat flux of the Florida Current at 27°N derived from cross-stream voltages and profiling data: theory and observations.Philos. Trans. R. Soc. London,A338, 169–236.CrossRefGoogle Scholar
  23. Larsen, J. C., R. L. Mackie, A. Manzella, A. Fiordelisi, and S. Rieven. 1996. Robust sm ooth magnetotelluric transfer functions.Geophys. J. Int.,124, 801–809.CrossRefGoogle Scholar
  24. Liu, W.T., K.B. Katsaros, and J.A. Businger. 1979. Bulk parameterization of the air-sea exchange of heat and water vapor including the molecular constraints at the interface.J. Atmos. Sci.,36, 1722–1735.CrossRefGoogle Scholar
  25. Lyu, S. J. and K. Kim. 2003. Absolute transport from the sea level difference across the Korea Strait.Geophys. Res. Lett.,30, 1285, doi:10.1029/2002GL016233.CrossRefGoogle Scholar
  26. Lyu, S. J., K. Kim, and H. T. Perkins. 2002a. Atmospheric pressure-forced subinertial variations in the transport through the Korea Strait.Geophys. Res. Lett.,29, 1294, doi:10.1029/2001GL014366.CrossRefGoogle Scholar
  27. Lyu, S. J., Y.-G. Kim, K. Kim, J. W. Book, and B. H. Choi. 2002b. Tidal variations in the cable voltage across the Korea Strait.J. Korean Soc. Oceanogr.,37, 1–9.Google Scholar
  28. Nam, S. H., K.-W. Kim, H. R. Kim, C. B. Cho, S. J. Lyu, Y. G. Kim, and K. Kim. 2003. Development of ESROB (East Sea Real-time Ocean Buoy). In:PICES Scientific Report series from 2002 MONITOR workshop, Qingdao, China.Google Scholar
  29. Nam, S. H., S. J. Lyu, Y. H. Kim, K. Kim, J.-H. Park, and D. R. Watts. 2004a. Correction of TOPEX/POSEIDON altimeter data for nonisostatic sea level response to atmospheric pressure in the Japan/East Sea.Geophys. Res. Lett.,31(2), L02304, doi: 10.1029/2003GL018487.CrossRefGoogle Scholar
  30. Nam, S. H., J. Y. Yun, and K. Kim, 2004b. Observations on the coastal ocean response to typhoon ‘Maemi’ at the East Sea Real-time Ocean Buoy.J. Korean Soc. Oceanogr. (The Sea),9(3), 111–119.Google Scholar
  31. Nam, S. H., Y. H. Kim, K.-A. Park, and K. Kim. 2004c. Spatiotemporal variability in sea surface wind stress near and off the east coast of Korea.Acta. Oceanol. Sin.,24(1). (In press)Google Scholar
  32. Park, J.J., K. Kim, J.-C. Nam, Y.-H. Youn, H.M. Lee, and J.-W. Seo. 2002. Data validation from ARGO float.Proc. Korean Meteorol. Soc. Spring, Seoul, Korea.Google Scholar
  33. Park, J.J. and K. Kim. 2003. Importance of surface water property in previous winter on the formation of HSIW in the East/Japan Sea.PICES, Seoul, Korea.Google Scholar
  34. Park, J.J., K. Kim, and W. R. Crawford. 2004. Inertial currents estimated from surface trajectories of ARGO floats.Geophys. Res. Lett.,31, L13307, doi:10.1029/2004GL020191.CrossRefGoogle Scholar
  35. Park, J.J., K. Kim, B. A. King, and S. C. Riser. 2005. An advanced method to estimate deep current from ARGO floats.J. Atmos. Oceanic Tech. (In press).Google Scholar
  36. Park, J.J., K. Kim, and B. A. King. 2005. Global Statistics of inertial motions.Gephys. Res. Lett. (In preparation).Google Scholar
  37. Park, K.-A., J. Y. Chung, K. Kim, and B. H. Choi. 1994. A study on comparison of satellite drifter temperature with satellite derived sea surface temperature of NOAA/NESDIS.J. Korean Soc. Remote Sensing,11(2), 83–107.Google Scholar
  38. Park, K.-A., J. Y. Chung, K. Kim, B. H. Choi, and D. K. Lee. 1999. Sea surface temperature retrievals optimized to the East Sea (Sea of Japan) using NOAA/AVHRR data.Marine Technol. Soc. J.,33(1), 23–35.CrossRefGoogle Scholar
  39. Park, K.-A. and P. C. Cornillon. 2002. Stability-induced modification of sea surface winds over Gulf Stream rings.Geophys. Res. Lett.,29(24), 2211–2214.CrossRefGoogle Scholar
  40. Park, K.-A., K. R. Kim, K. Kim, J. Y. Chung, and P. C. Cornillon. 2003. Comparison of wind speed from an atmospheric pressure map (Na wind) and satellite scatterometer-observed wind speed (NSCAT) over the East (Japan) Sea.J. Korean Soc. Oceanogr.,38(4), 173–184.Google Scholar
  41. Park, K.-A., K. Kim, K.R. Kim, J.Y. Chung, and P. C. Cornillon. 2003. Spatial and temporal variability of sea surface winds and Ekman pumping retrieved from satellite scatterometer-observed wind vectors over the East Sea. In:PICES, Seoul, Korea.Google Scholar
  42. Park, K.-A., J. Y. Chung, and K. Kim. 2004a. Sea surface temperature Fronts in the East (Japan) Sea and temporal variations.Geophys. Res. Lett.,31, L07304, doi:10.1029/2004GL019424.CrossRefGoogle Scholar
  43. Park, K.-A., K. Kim, K. R. Kim, P.C. Cornillon, and C.-O. Jo. 2004b. Ekman pumping variability in the East (Japan) Sea and its impact on nutrient distributions. In:6th IOC/WESTPAC Symposium, Hangzhou, China.Google Scholar
  44. Park, K.-A., J. Y. Chung, and K. R. Kim. 2004c. SST Applications at SNU/RIO. In:6th IOC/WESTPAC Symposium, Hangzhou, China.Google Scholar
  45. Park, K.-A., J. Y. Chung, K. Kim, and P. C. Cornillon. 2004d. Wind and bathymetric forcing of the annual sea surface temperature signal in the East (Japan) Sea.Geophys. Res. Lett.,32, L5610, doi:10. 1029/2004GL022197.CrossRefGoogle Scholar
  46. Park, Y.-G., K.-H. Oh, K.-I. Chang, and M.-S. Suk. 2004. Intermediate level circulation of the southwestern part of the East/Japan Sea estimated from autonomous isobaric profiling floats.Geophys. Res. Lett.,31, L13213, doi:10.1029/2004GL020424.CrossRefGoogle Scholar
  47. Sanford, T. B. and R. E. Flick. 1975. On the relationship between transport and motional electric potentials in broad, shallow currents.J. Mar. Res.,33, 123–139.Google Scholar
  48. Takikawa, T., J.-H. Yoon, H. Hase, and K.-D. Cho. 1999. Monitoring of the Tsushima Current at the Tsushima/Korea Straits. p. 15–18. In:Proc. 3rd CREAMS Int. Symp., Fukuoka, Japan. Japanese Ministry of Education, Science, Sports and Culture.Google Scholar
  49. Teague, W. J., G. A. Jacobs, H. T. Perkins, J. W. Book, K.-I. Chang, and M.-S. Suk. 2002. Low-frequency current observations in the Korea/Tsushima Strait.J. Phys. Oceanogr.,32, 1621–1641.CrossRefGoogle Scholar
  50. Teague, W.J., K.L. Tracey, D.R. Watts, J.W. Book, K.-I. Chang, P.J. Hogan, D.A. Mitchell, M.-S. Suk, M. Wimbush, and J.- H. Yoon. 2005. Observed deep circulation in the Ulleung Basin.Deep-Sea Res. II. (In press)Google Scholar
  51. Wong, A. P. S., G. C. Johnson, and W. B. Owens. 2003. Delayed-mode calibration of autonomous CTD profiling float salinity data by theta-S climatology.J. Atmos. Oceanic Tech.,20, 308–318.CrossRefGoogle Scholar

Copyright information

© Korea Ocean Research and Development Institute(KORDI) and the Korean Society of Oceanography(KSO) 2005

Authors and Affiliations

  • Kuh Kim
    • 1
  • Yun Bae Kim
    • 1
  • Jong Jin Park
    • 1
  • SungHyun Nam
    • 1
  • Kyung-Ae Park
    • 1
  • Kyung-Il Chang
    • 1
  1. 1.School of the Earth and Environmental SciencesCollege of Natural Sciences, Seoul National UniversitySeoulKorea

Personalised recommendations