The Mathematical Intelligencer

, Volume 1, Issue 2, pp 84–86 | Cite as

Maximum antichains in the partition lattice

  • R. L. Graham


Bipartite Graph Finite Simple Group Stirling Number Automorphic Representation Maximum Antichains 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Rodney Canfield, On a problem of Rota, Bull. Amer. Math. Soc., 84 (1978), p. 164.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Rodney Canfield, Application of the Berry-Esséen inequality to combinatorial estimates, (1977) (preprint).Google Scholar
  3. [3]
    E. Rodney Canfield, On the location of the maximum Stirling number(s) of the second kind, (1977) (preprint).Google Scholar
  4. [4]
    E. Rodney Canfield, On a problem of Rota, (1977) (preprint).Google Scholar
  5. [5]
    R. L. Graham and L. H. Harper, Some results on matching in bipartite graphs, SIAM Jour. on Appl. Math., 17 (1969), 1017–1022.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    C. Greene, Sperner families and partitions of a partially ordered set, Combinatorics, Math. Centre Tract 56, (1974) Amsterdam, 91–106.MathSciNetGoogle Scholar
  7. [7]
    C. Greene and D. J. Kleitman, On the structure of Sperner k-families, Jour. Comb. Th. (A), 20 (1976), 41–68.CrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Hall, On representatives of subsets, Jour. London Math. Soc., 10 (1935), 26–30.MATHCrossRefGoogle Scholar
  9. [9]
    L. H. Harper, The morphology of partially ordered sets, Jour. Comb. Th. (A), 17 (1974), 44–58.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. O. H. Katona, Extremal problems for hypergraphs, Combinatorics, Math. Centre Tract 56, (1974) Amsterdam 13–42.MathSciNetGoogle Scholar
  11. [11]
    G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145–254.MATHCrossRefGoogle Scholar
  12. [12]
    F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 2nd ser., 30 (1930) 264–286.CrossRefGoogle Scholar
  13. [13]
    J. Riordan, An introduction to combinatorial analysis, Wiley, New York, 1958.MATHGoogle Scholar
  14. [14]
    G. -C. Rota, Research problem 2-1, Jour. Comb. Th. 2 (1967), p. 104.Google Scholar
  15. [15]
    I. Schur, Über die Kongruenz xm + ym = zm (mod p) Jahrb. Deutsch Math. — Verein. 25 (1916) 114–116.Google Scholar
  16. [16]
    E. S. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544–548.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. L.van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde, 15 (1927) 212–216.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1978

Authors and Affiliations

  • R. L. Graham
    • 1
  1. 1.Bell LaboratoriesMurray HillNew JerseyUSA

Personalised recommendations