Advertisement

Canadian Journal of Anesthesia

, Volume 53, Issue 10, pp 1004–1009 | Cite as

Analgesic effects of systemic midazolam: comparison with intrathecal administration

  • Tomoki Nishiyama
Regional Anesthesia and Pain

Abstract

Purpose

Midazolam has antinociceptive effects when administered intrathecally, while its effects associated with systemic administration remain controversial. In the present study, the antinociceptive properties of systemically vs intrathecally administered midazolam were investigated in a rat model of thermal and inflammatory pain.

Methods

One hundred seventy-six (n = 8 animals per dose escalation) male Sprague-Dawley rats were instrumented with lumbar intrathecal catheters. Tail withdrawal in response to thermal stimulation, or paw flinching and shaking in response tosc hind paw formalin injection were compared following intrathecal injection of midazolam (1, 3, 10, 30, or 100 μg in 10μL) orip administration (3, 30, 300, or 3,000 μg in 300 μL). Saline 10 μL or 300 μL was used as a control. Behavioural side effects and motor disturbance were also examined.

Results

Intrathecal administration of midazolam increased tail flick latency dose dependently (P < 0.05) with a 50% effective dose (ED50) of 1.60 μg, whereas ip administration did not increase latency. Both intrathecal and ip routes of administration decreased the number of paw flinches in both phases 1 and 2 of the formalin test (P < 0.05). The ED50s were 1.26 μg [confidence interval (CI), 0.35–3.18 μg], (phase 1) and 1.20 μg (CI, 0.29–3.71 μg), (phase 2) with intrathecal administration, and 11.6 μg (CI, 2.5–19.3 μg), (phase 1) and 52.2 μg (CI, 18.3–102.7 μg), (phase 2) with ip administration.

Conclusion

Systemically administered midazolam induced antinociception for inflammatory pain only, while intrathecal administration elicited antinociceptive effects on both acute thermal and inflammatory-induced pain.

Keywords

Midazolam Antinociceptive Effect Formalin Test Intrathecal Administration Tail Flick 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Les effets analgésiques du midazolam à action générale: comparaison avec l’administration intrathécale

Résumé

Objectif

Administré par voie intrathécale, le midazolam a des effets antinociceptifs, mais les effets d’une administration intra-péritonéale(ip) demeurent controversés. Dans la présente étude, nous avons vérifié les propriétés antinociceptives de l’administration générale vs intrathécale du midazolam chez un modèle expérimental de douleur thermique et inflammatoire chez le rat.

Méthode

Un cathéter intrathécal lombaire a été mis en place chez 176 (n = 8 animaux par dose croissante) rats mâles Sprague-Dawley. Le retrait de la queue, en réaction à la stimulation thermique, ou le tressaillement et le tremblement de la patte en réaction à l’injection sc de formaline dans la patte arrière, ont été comparés à la suite d’une injection intrathécale de midazolam (1, 3, 10, 30, or 100 μg dans 10 μL) ou l’administration ip (3, 30, 300, ou 3 000 μg dans 300 μL). Une solution salée, 10 μL ou 300 μL, a servi de solution témoin. Les effets secondaires comportementaux et les troubles moteurs ont été aussi examinés.

Résultats

L’administration intrathécale de midazolam a augmenté la latence de la rétraction de la queue en fonction de la dose (P < 0,05) avec une dose efficace moyenne (ED50) de 1,60μg, tandis que l’administration ip n’a pas augmenté la latence. Les voies d’administration intrathécale et ip ont réduit le nombre de retraits de la patte au cours des phases 1 et 2 du test à la formaline (P < 0,05). Les ED50 ont été de 1,26 μg [intervalle de confiance (IC), 0,35–3,18 μg], (phase 1) et de 1,20μg (IC, 0,29–3,71 μg), (phase 2) avec l’administration intrathécale et de 11,6 μg (IC, 2,5–19,3 μg), (phase 1) et de 52,2 μg (IC, 18,3–102,7 μg), (phase 2) avec l’administration ip.

Conclusion

L’administration intrapéritonéale de midazolam a induit une antinociception pour la douleur inflammatoire seulement alors que l’administration intrathécale a produit des effets antinociceptifs sur la douleur thermique aiguë et la douleur induite par l’inflammation.

References

  1. 1.
    Edwards M, Serrao JM, Gent JP, Goodchild CS. On the mechanism by which midazolam causes spinally mediated analgesia. Anesthesiology 1990; 73:273–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Yanez A, Sabbe MB, Stevens CW, Yaksh TL. Interaction of midazolam and morphine in the spinal cord of the rat. Neuropharmacology 1990; 29:359–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Niv D, Davidovich S, Geller E, Urca G. Analgesic and hyperalgesic effects of midazolam: dependence on route of administration. Anesth Analg 1988; 67:1169- 73.PubMedCrossRefGoogle Scholar
  4. 4.
    Taira Y, Nakakimura K, Matsumoto M, Sakabe T. Spinal and supraspinal midazolam potentiates antino- ciceptive effects of isoflurane. Br J Anaesth 2000; 85:881–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992; 51:5–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Li J, Simone DA, Larson AA. Windup leads to characteristics of central sensitization. Pain 1999; 79:75–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Puig S, Sorkin LS. Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase 2 activity. Pain 1996; 64:345–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Crawford ME, Jensen FM, Toftdahl DB, Madsen JB. Direct spinal effect of intrathecal and extradural midazolam on visceral noxious stimulation in rabbits. Br J Anaesth 1993; 70:642–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Schofield PR, Darlison MG, Fujita N, et al. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 1987; 328:221–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Tatsuo MA, Salgado JV, Yokoro CM, Duarte ID, Francischi JN. Midazolam-induced hyperalgesia in rats: modulation via GABAA receptors at supraspinal level. Eur J Pharmacol 1999; 370:9–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Mantegazza P, Parenti M, Tammiso R, Vita P, Zambotti F, Zonta N. Modification of the antinociceptive effect of morphine by centrally administered diazepam and midazolam. Br J Pharmacol 1982; 75:569–72.PubMedGoogle Scholar
  12. 12.
    Luger TJ, Hayashi T, Weiss CG, Hill HF. The spinal potentiating effect and the supraspinal inhibitory effect of midazolam on opioid-induced analgesia in rats. Eur J Pharmacol 1995; 275:153–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Gear RW, Miaskowski C, Heller PH, Paul SM, Gordon NC, Levine JD. Benzodiazepine mediated antagonism of opioid analgesia. Pain 1997; 71:25–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Daghero AM, Bradley EL Jr,Kissin I. Midazolam antagonizes the analgesic effect of morphine in rats. Anesth Analg 1987; 66:944–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Ding XH, Ji XQ, Tsou K. Pentobarbital selectively blocks supraspinal morphine analgesia. Evidence for GABAA receptor involvement. Pain 1990; 43:371–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Hall RI, Schwieger IM, Hug CC Jr. The anesthetic efficacy of midazolam in the enflurane-anesthetized dog. Anesthesiology 1988; 68:862–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Sumida T, Tagami M, Ide Y, Nagase M, Sekiyama H, Hanaoka K. Intravenous midazolam suppresses noxiously evoked activity of spinal wide dynamic range neurons in cats. Anesth Analg 1995; 80:58–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Kontinen VK, Dickenson AH. Effects of midazolam in the spinal nerve ligation model of neuropathic pain in rats. Pain 2000; 85:425–31.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2006

Authors and Affiliations

  1. 1.Department of AnesthesiologyThe University of Tokyo, Faculty of MedicineTokyoJapan

Personalised recommendations