Canadian Journal of Anesthesia

, Volume 54, Issue 6, pp 448–452 | Cite as

Efficacy of preoxygenation using tidal volume and deep breathing techniques with and without prior maximal exhalation

  • Usharani Nimmagadda
  • M. Ramez Salem
  • Ninos J. Joseph
  • Istvan Miko
Reports of Original Investigations



We evaluated the influence of prior maximal exhalation on preoxygenation in 15 adult volunteers using tidal volume breathing (TVB) for five minutes and deep breathing (DB) for two minutes with and without prior maximal exhalation.


Inspired and end-tidal oxygen, nitrogen and carbon dioxide were monitored continuously and recorded during room air breathing and at 30-sec intervals during 100% oxygen TVB or DB (rate of 8 breaths·min−1).


Tidal volume breathing with prior maximal exhalation resulted in an end-tidal oxygen concentration (ETO2) slightly higher (P = 0.028) at 0.5 and 1.0 min as compared with TVB without prior maximal exhalation at the same time periods. Regardless of whether TVB was preceded by maximal exhalation or not, 2.5 min was required to reach a mean ETO2 value of 90% or higher. With DB, there were no differences in ETO2 values at any time period and 1.5 min was required to reach an ETO2 of 90% or greater, with or without prior maximal exhalation.


Maximal exhalation prior to TVB slightly steepens the initial rise in ETO2 during the first minute, but confers no real benefit if maximal preoxygenation is the goal. Maximal exhalation prior to DB has no added value in enhancing preoxygenation.


Functional Residual Capacity Deep Breathing Volume Courant Tidal Volume Breathing Maximal Exhalation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Efficacité de la préoxygénation utilisant les techniques de respiration en volume courant et de respiration profonde avec et sans expiration maximale préalable



Nous avons évalué l’influence d’une expiration maximale préalable sur la préoxygénation chez 15 volontaires adultes utilisant la respiration en volume courant (TVB) durant cinq minutes et la respiration profonde (DB) pendant deux minutes, avec et sans expiration maximale préalable.


Les concentrations inspirées et expirées d’oxygène, d’azote et de dioxyde de carbone ont été mesurées continuellement et enregistrées aux 30 sec durant la respiration à l’air ambiant durant une TVB ou une DB d’oxygène à 100% (fréquence respiratoire de 8·min−1).


La respiration en volume courant avec une expiration maximale préalable a permis d’obtenir une concentration d’oxygène expiré (ETO2) légèrement plus élevée (P = 0,028) à 0,5 et 1,0 min comparée à une TVB sans expiration maximale préalable aux mêmes temps. Afin d’atteindre une valeur moyenne d’ETO2 de 90 % ou plus, 2,5 minutes étaient nécessaires, avec ou sans expiration maximale préalable. Avec la DB, une différence dans les valeurs d’ETO2 n’a été observée à aucune période de temps, et 1,5 min ont été nécessaires pour atteindre une ETO2 de 90% ou plus, avec ou sans expiration maximale préalable.


Une expiration maximale préalable à une TVB accentue légèrement la montée initiale d’ETO2 durant la première minute, mais n’apporte pas de bénéfice réel si la préoxygénation maximale est visée. Une expiration maximale préalable à une DB n’a pas de valeur ajoutée quant à l’amélioration de la préoxygénation.


  1. 1.
    Dillon JB, Darsie ML. Oxygen for acute respiratory depression due to administration of thiopental sodium. J Am Med Assoc 1955; 159: 1114–6.PubMedGoogle Scholar
  2. 2.
    Drummond GB, Park GR. Arterial oxygen saturation before intubation of the trachea. An assessment of oxygenation techniques. Br J Anaesth 1984; 56: 987–93.PubMedCrossRefGoogle Scholar
  3. 3.
    American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology 2003; 98: 1269–77.CrossRefGoogle Scholar
  4. 4.
    Anonymous. Preoxygenation: physiology and practice (Editorial). Lancet 1992; 339: 31-2.Google Scholar
  5. 5.
    Berthoud M, Read DH, Norman J: Pre-oxygenation - how long? Anaesthesia 1983; 38: 96–102.PubMedCrossRefGoogle Scholar
  6. 6.
    Gold MI, Duarte I, Muravchick S.. Arterial oxygenation in conscious patients after 5 minutes and after 30 seconds of oxygen breathing. Anesth Analg 1981; 60: 313–5.PubMedGoogle Scholar
  7. 7.
    Baraka AS, Taha SK, Aouad MT, El-Khatib MF, Kawkabani NI. Preoxygenation: comparison of maximal breathing and tidal volume breathing techniques. Anesthesiology 1999; 91: 612–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Nimmagadda U, Chiravuri SD, Salem MR, et al. Preoxygenation with tidal volume and deep breathing techniques: the impact of duration of breathing and fresh gas flow. Anesth Analg 2001; 92: 1337–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Baraka AS, Taha SK, El-Khatib MF, Massouh FM, Jabbour DG, Alameddine MM. Oxygenation using tidal volume breathing after maximal exhalation. Anesth Analg 2003; 97: 1533–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Benumof JL. Preoxygenation: best method for both efficacy and efficiency (Editorial). Anesthesiology 1999; 91: 603–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Carmichael FJ, Cruise CJ, Crago RR, Paluck S. Preoxygenation: a study of denitrogenation. Anesth Analg 1989; 68: 406–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Berry CB, Miles PS. Preoxygenation in healthy volunteers: a graph of oxygen “washin” using end-tidal oxy-graphy. Br J Anaesth 1994; 72: 116–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Bhatia PK, Bhandari SC, Tulsiani KL, Kumar Y. End- tidal oxygraphy and safe duration of apnoea in young adults and elderly patients. Anaesthesia 1997; 52: 175–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Gambee AM, Hertzka RE, Fisher DM. Preoxygenation techniques: comparison of three minutes and four breaths. Anesth Analg 1987; 66: 468–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Farmery AD, Roe PG. A model to describe the rate of oxyhaemoglobin desaturation during apnoea. Br J Anaesth 1996; 76: 284–91.PubMedGoogle Scholar
  16. 16.
    Benumof JL, DaggR, Benumof R. Critical hemoglobin desaturation will occur before return to an unparalyzed state following 1 mg/kg intravenous succinylcholine. Anesthesiology 1997; 87: 979–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Nimmagadda U, Salem MR, Joseph NJ, et al. Efficacy of preoxygenation with tidal volume breathing. Comparison of breathing systems. Anesthesiology 2000; 93: 693–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Mertzlufft F, Zander R. Optimal pre-oxygenation: the NasOral-system. Adv Exp Med Biol 1994; 345: 45–50.PubMedGoogle Scholar
  19. 19.
    Hamilton WK, Eastwood DW. A study of denitrogenation with some inhalation anesthetic systems. Anesthesiology 1955; 16: 861–7.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2007

Authors and Affiliations

  • Usharani Nimmagadda
    • 1
    • 2
    • 3
  • M. Ramez Salem
    • 1
    • 2
  • Ninos J. Joseph
    • 1
  • Istvan Miko
    • 1
  1. 1.Departments of AnesthesiologyAdvocate Illinois Masonic Medical CenterChicagoUSA
  2. 2.University of Illinois College of MedicineChicagoUSA
  3. 3.Department of AnesthesiologyAdvocate Illinois Masonic Medical CenterChicagoUSA

Personalised recommendations