Paläontologische Zeitschrift

, Volume 79, Issue 1, pp 3–51 | Cite as

Modem organic-walled dinoflagellate cysts in arctic marine environments and their (paleo-) environmental significance

  • Jens Matthiessen
  • Anne de Vernal
  • Martin Head
  • Yuri Okolodkov
  • Karin Zonneveld
  • Rex Harland


The Arctic Ocean is one of the least known marine regions of the world. Because of its major influence on global climate and its hostile environmental conditions it is a fascinating area for paleoecological, paleoclimatic and paleoceanographic research. The composition of planktic microfossil assemblages, and both the trace-element and stable isotope compositions of hard parts, provide us with valuable information about the physical and biochemical parameters of surface waters in the high northern latitudes. Calcareous and biosiliceous microfossils that are traditionally used in Quaternary paleoenvironmental studies are of limited value in the Arctic Ocean because of their low abundances, low diversity and/or low preservation potential. The past several decades have seen considerable progress in our knowledge of the ecology and biogeography of dinoflagellates and their organic-walled cysts in the high northern latitudes, and these dinoflagellate cysts are now important proxies for reconstructing surface water conditions in the Quaternary. This arcticle gives an overview of the ecology of dinoflagellates and their cysts, the processes that transform the living communities into sediment communities, and the environmental gradients that may be reconstructed from fossil dinoflagellate cysts assemblages in the high northern latitudes.


Dinoflagellates dinoflagellate cysts morphology (paleo-) ecology Arctic Ocean 


Der Arktische Ozean ist eine der am wenigsten untersuchten marinen Regionen des Weltozeans. Durch seinen Einfluss auf das globale Klima und die lebensfeindlichen Umweltbedingungen ist es eines der faszinierendsten Gebiete für paläoökologische, paläoklimatische und paläoozeanographische Forschung. Die Zusammensetzung der planktischen Mikrofossilvergesellschaftungen, sowie die Spurenelement- und die stabile Isotopenzusammensetzung der Hartteile, liefern wertvolle Informationen über physikalische und biochemische Parameter der Oberflächenwas-sermassen in den hohen nördlichen Breiten. Kalkige und kieselige Mikrofossilien, die traditionell in Paläoumwelt-studien des Quartärs benutzt werden, sind aufgrund von geringen Häufigkeiten, geringer Diversität und/oder geringem Fossilisationspotenzial von eingeschränkter Bedeutung. Beträchtlicher Fortschritt wurde in unseren Kenntnissen der Ökologie und Biogeographie der Dinoflagellaten und ihrer Zysten in den polaren und subpolaren Gebiete der hohen nördlichen Breiten in den vergangenen Jahrzehnten gemacht, und diese organisch-wandigen Mikrofossilien sind deshalb wichtige Proxies für die Rekonstruktion der Eigenschaften der oberflächennahen Wassermassen im Quartär. Diese Arbeit gibt einen Überblick über die Ökologie der Dinoflagellaten und ihrer Zysten, der Prozesse, die die Lebendgemeinschaften in Sedimentgemeinschaften umwandeln, und den Umweltgradienten, die mit den fossilen Dinoflagellaten-Zysten Vergesellschaftungen in den hohen nördlichen Breiten rekonstruiert werden können.


Dinoflagellaten Dinoflagellaten-Zysten Morphologie (Paläo-) Ökologie Arktischer Ozean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelmann, A. 1992. Diatom assemblages in Arctic sea ice - indicator for ice drift pathways. — Deep-Sea Research39, Suppl. 2: 525–538.Google Scholar
  2. Abelmann, A.;Brathauer, U.;Gersonde, R.;Sieger, R. &Zielinski, U. 1999. Radiolarian-based transfer function for the estimation of sea surface temperatures in the Southern Ocean (Atlantic sector). — Paleoceanography14: 410–421.Google Scholar
  3. Abé, T.H. 1981. Studies on the family Peridiniidae. An unfinished monograph of the armoured Dinoflagellata. — Seto Marine Biological Laboratory, Special Publications Series6: 411.Google Scholar
  4. Aksu, A.E.;Abrajano, T.;Mudie, P.J. &Yasar, D. 1999. Organic geochemical and palynological evidence for terrigenous origin of the organic matter in Aegean Sea sapropel Sl.— Marine Geology153:303–318.Google Scholar
  5. Alldredge, A.L. &Gotschalk, C.C. 1990. The relative contribution of marine snow of different origins to biological processes in coastal waters. — Continental Shelf Research10: 41–58.Google Scholar
  6. Alldredge, A.L.;Passow, U. &Haddock, S.H.D. 1998. The characteristics and transparent exopolymer particle (TEP) content of marine snow formed from thecate dinoflagellates. — Journal of Plankton Research20: 393–406.Google Scholar
  7. Anderson, D.M. 1998. Physiology and bloom dynamics of toxicAlex-andrium species, with emphasis on life cycle transitions. — In: Anderson, D.M.; Cemballa, A.D. & Hallegraeff, G.M., eds., Physiological Ecology of Harmful Algal Blooms: 29–48, Berlin (Springer).Google Scholar
  8. Anderson, D.M. &Keafer, B.A. 1987. An endogenous annual clock in the toxic marine dinoflagellateGonyaulax tamarensis. — Nature325: 616–617.Google Scholar
  9. Anderson, D.M. &Lindquist, N.L. 1985. Time-course measurements of phosphorus depletion and cyst formation in the dinoflagellateGonyaulax tamarensis Lebour. — Journal of Experimental Marine Biology and Ecology86: 1–13.Google Scholar
  10. Anderson, D.M. &Morel, F.M.M. 1979. The seeding of two red tide blooms by the germination of benthicGonyaulax tamarensis hypnocysts. — Estuarine and Coastal Marine Science8: 279–293.Google Scholar
  11. Anderson, D.M. &Wall, D.M. 1978. Potential importance of benthic cysts ofGonyaulax tamarensis andGonyaulax excavata in initiating toxic dinoflagellate bloom. — Journal of Phycology14: 224–234.Google Scholar
  12. Anderson, D.M.;Aubrey, D.G.;Tyler, M.A. &Coats, D.W. 1982. Vertical and horizontal distributions of dinoflagellate cysts in sediments. — Limnology and Oceanography27: 757–765.Google Scholar
  13. Anderson, L.G.;Björk, G.;Holby, O.;Jones, E.P.;Kattner, G.;Koltermann, K.P.;Lijeblad, B.;Lindegren, R.;Rudels, B. &Swift, J. 1994. Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition. — Journal of Geophysical Research99: 3273–3283.Google Scholar
  14. Anderson, D.M.;Chisholm, S.W. &Watras, C.J. 1983. Importance of life cycle events in the population dynamics ofGonyaulax tamarensis. — Marine Biology76: 179–189.Google Scholar
  15. Anderson, D.M.;Kulis, D.M. &Binder, B.J. 1984. Sexuality and cyst formation in the dinoflagellateGonyaulax tamarensis: I. Cyst yield in batch cultures. — Journal of Phycology20: 418–425.Google Scholar
  16. Anderson, D.M.;Lively, J.J.;Reardon, E.M. &Price, CA. 1985. Sinking characteristics of dinoflagellate cysts. — Limnology and Oceanography30: 1000–1009.Google Scholar
  17. Anderson, D.M.;Taylor, CD. &Armbrust, E.V. 1987. The effects of darkness and anaerobiosis on dinoflagellate cyst germination. — Limnology and Oceanography32: 340–351.Google Scholar
  18. Andreassen, I.;Nöthig, E.-M. &Wassmann, P. 1996. Verticle particle flux on the shelf off northern Spitsbergen, Norway. — Marine Ecology Progress Series137: 215–228.Google Scholar
  19. Balech, E. 1970. The distribution and endemism of some Antarctic microplankters. — In: Holdgate, M.W., ed., Antarctic Ecology: 143–147, London (Academic Press).Google Scholar
  20. Balech, E. 1980. On thecal morphology of dinoflagellates with special emphasis on circular and sulcal plates. — Anales del Centro de Ciencias del Mar y Limnologi’a, Universidad Nacional Autönoma de México7: 57–67.Google Scholar
  21. Balch, W.M.;Reid, P.C. &Surrey-Gent, S.C. 1983. Spatial and temporal variability of dinoflagellate cyst abundance in a tidal estuary. — Canadian Journal of Fisheries and Aquatic Sciences40: 244–261.Google Scholar
  22. Baroin, A.;Perasso, R.;Liang-Hu, Q.;Brugerolle, G.;Bachellerie, J.-P. &Adoutte, A. 1988. Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. — Proceedings of the National Academy of Sciences USA85: 3474–3478.Google Scholar
  23. Bathmann, U.V.;Noji, T.T. &von Bodungen, B. 1990. Copepod grazing potential in late winter in the Norwegian Sea — a factor in the control of spring phytoplankton growth? — Marine Ecology Progress Series60: 225–233.Google Scholar
  24. Beers, J.R.;Reid, F.M.H. &Stewart, G.L. 1975. Microplankton of the North Pacific Gyre. Population structure and abundance, June 1973. — Internationale Revue der Gesamten Hydrobiologie und Hydrographie60: 607–638.Google Scholar
  25. Beers, J.R.;Reid, F.M.H. &Stewart, GL. 1982. Seasonal abundance of the microplankton population in the North Pacific Gyre. — Deep-Sea Research29: 227–245.Google Scholar
  26. Biebow, N. 1996. Dinoflagellatenzysten als Indikatoren der spät-und postglazialen Entwicklung des Auftriebsgeschehens vor Peru. — GEOMAR Report57: 1–100.Google Scholar
  27. Binder, B.J. &Anderson, D.M. 1986. Green light-mediated photo-morphogenesis in a dinoflagellate resting cyst. — Nature322: 659–661.Google Scholar
  28. Binder, B.J. &Anderson, D.M. 1990. Biochemical composition and metabolic activity ofScrippsiella trochoidea (Dinophyceae) resting cysts. — Journal of Phycology26: 289–298.Google Scholar
  29. Biscaye, P.E. &Eittreim, S.L. 1977. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean. — Marine Geology23: 155–172.Google Scholar
  30. Bolch, C.J.S. &Reynolds, M.J. 2002. Species resolution and global distribution of microreticulate dinoflagellate cysts. — Journal of Plankton Research24: 565–578.Google Scholar
  31. Bolch, C.J.S.;Negri, A.P. &Hallegraeff, G.M. 1999.Gymnodinium microreticulatum sp. nov. (Dinophyceae): a naked, microreticulate cyst-producing dinoflagellate, distinct fromGymnodinium catenatum andGymnodinium nolleri. — Phycologia38: 301–313.Google Scholar
  32. Braarud, T. 1935. The “Øst” expedition to the Denmark Strait 1929, II: The phytoplankton and its conditions of growth. — Hvalrådets Skrifter10: 1–172.Google Scholar
  33. Braarud, T. 1962. Species distribution in marine phytoplankton. —Journal of the Oceanographical Society of Japan 20th Anniversary Volume: 628–649.Google Scholar
  34. Braarud, T.;Gaarder, K.R. &Grøntved, J. 1953. The phytoplankton of the North Sea and adjacent waters with special reference to the international survey, May 1948. — Rapports et Procès-verbaux des Réunions, Conseil permanent international pour l’Exploration de la Mer133: 1–89.Google Scholar
  35. Braarud, T.;Gaarder, K.R. &Nordli, O.1958. Seasonal changes in the phytoplankton at various points off the Norwegian West Coast. — Fiskeridirektoratets Skrifter, Serie Havundersøkelser12: 1–77.Google Scholar
  36. Bradford, M.R. 1978. Acritarchous cysts ofPeridinium faeroense Paulsen: implications for dinoflagellate systematic. A discussion. — Palynology2: 195–197.Google Scholar
  37. Bralewska, J.M. &Witek, Z. 1995. Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdansk. — Marine Ecology Progres Series117: 241–248.Google Scholar
  38. Brand, L.E.;Sunda, W.G. & R.R.L., G. 1983. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. — Limnology and Oceanography28: 1182–1198.Google Scholar
  39. Bravo, I.;Franco, J.M. &Reyero, M.I. 1998. PSP toxin composition of three life cycle stages ofGymnodinium catenatum. — In: Reguera, B.; Blanco, J.; Fernandez, M.L. & Wyattt, T., eds., Harmful algae: 356–358, Grafisant, Santiago de Compostela (Xunta de Galicia and IOC of UNESCO).Google Scholar
  40. Brenner, W.W. &Biebow, N. 2001. Missing autofluorescence of recent and fossil dinoflagellate cyst — an indication of heterotrophy. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen219: 229–240.Google Scholar
  41. Buck, K.R. &Newton, J. 1995. Fecal pellet flux in Dabob bay during a diatom bloom: Contribution of microzooplankton. — Limnology and Oceanography40: 306–315.Google Scholar
  42. Burkill, P.H.;Edwards, E.S.;John, A.W.G. &Sleigh, M.A. 1993. Microzooplankton and their herbivorous activity in the northeastern Atlantic Ocean. — Deep-Sea Research II40: 479–493.Google Scholar
  43. Bursa, A.S. 1961. The annual oceanographic cycle at Igloolik in the Canadian Arctic. II. The phytoplankton. — Journal of the Fisheries Research of Board Canada18: 563–615.Google Scholar
  44. Bursa, A.S. 1963a. Phytoplankton successions in the Canadian Arctic. — In:Oppenheimer, C.H., ed., Symposium on Marine Microbiology: 625–628 (Charles C. Tomas Publisher).Google Scholar
  45. Bursa, A. 1963b. Phytoplankton in coastal waters of the Arctic Ocean at Point Barrow, Alaska. — Arctic16: 239–259.Google Scholar
  46. Calbet, A. &Landry, M.R. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. — Limnology and Oceanography49: 51–57.Google Scholar
  47. Carstens, M. 2002. Zur Ökologie von Schmelzwassertümpeln auf arktischem Meereis — Charakteristika, saisonale Dynamik und Vergleich mit anderen aquatischen Lebensräumen polarer Regionen. — Berichte zur Polar- und Meeresforschung409: 1–325.Google Scholar
  48. Cavalier-Smith, T. 1998. A revised six-kingdom system of life. — Biological Revue73: 203–266.Google Scholar
  49. Coats, D.W.;Adam, E.J.;Gallegos, CL. &Hedrick, S. 1996. Parasitism of photosynthetic dinoflagellates in a shallow subestuary of Chesapeake Bay, USA. — Aquatic Microbiology Ecology11: 1–9.Google Scholar
  50. Comiso, J.C. 2002. A rapidly declining perennial sea ice cover in the Arctic. — Geophysical Research Letters29: 17-1–17-4.Google Scholar
  51. CPRTeam 2004. Continuous plankton records: Plankton Atlas of the North Atlantic Ocean (1958–1999): II. Biogeographical charts. —Marine Ecology Progress Series Supplement: 11–75.Google Scholar
  52. Dale, A.M. &Dale, B. 1992. Dinoflagellate contributions to the sediment flux of the Nordic Seas. — In: Honjo, S., ed., Dinoflagellate contributions to the deep sea: 45–75, Ocean Biocenosis Series 5, Woods Hole (Woods Hole Oceanographic Institution).Google Scholar
  53. Dale, B. 1976. Cyst formation, sedimentation, and preservation: factors affecting dinoflagellate assemblages in Recent sediments from Trondheimsfjord, Norway. — Review of Palaeobotany and Palynology22: 39–60.Google Scholar
  54. Dale, B. 1978. Acritarchous cysts ofPeridinium faeroense Paulsen: Implications for dinoflagellate systematics. — Palynology2: 187–193.Google Scholar
  55. Dale, B. 1983. Dinoflagellate resting cysts: “benthic plankton”. — In: Fryxell, G.A., ed., Survival strategies of the algae: 69–144, Cambridge (Cambridge University Press).Google Scholar
  56. Dale, B. 1986. Life cycle strategies of oceanic dinoflagellates. — In: Pierrot-Bults, A.C., ed., Pelagic biogeography: 65–72, Paris (UNESCO).Google Scholar
  57. Dale, B. 1992. Dinoflagellate contributions to the open ocean sediment flux.—In:Honjo, S., ed., Dinoflagellate contributions to the deep sea: 1–31, Ocean Biocenosis Series 5, Woods Hole (Woods Hole Oceanographic Institution).Google Scholar
  58. Dale, B. 1996. Dinoflagellate cyst ecology: Modeling and geological applications. — In: Jansonius, J. & McGregor, D.C., eds., Palynology: principles and applications: 1249–1275, Dallas (American Association of Stratigraphic Palynologists).Google Scholar
  59. Dale, B. &Dale, A. 2002. Environmental applications of dinoflagellate cysts and acritarchs. — In: Haslett, S.K., ed., Quaternary environmental micropaleontology: 207–240, London (Arnold).Google Scholar
  60. Dale, B. &Fjellså, A. 1994. Dinoflagellate cysts as paleoproductivity indicators: state of the art, potential, and limits. — In: Zahn, R.; Pedersen, T.F.; Kaminski, M.A. & Labeyrie, L., eds., Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change: 521–537, Berlin (Springer).Google Scholar
  61. Dale, T.;Rey, F. &Heimdal, B.R. 1999. Seasonal development of phytoplankton at a high latitude oceanic site. — Sarsia84: 419–435.Google Scholar
  62. Daugbjerg, N.;Hansen, G.;Larsen, J. &Moestrup, Ø. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultratsructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. — Phycologia39: 302–317.Google Scholar
  63. de Vernal, A. &Giroux, L. 1991. Distribution of organic walled mi-crofossils in recent sediments from the Estuary and Gulf of St. Lawrence: some aspects of the organic matter fluxes. — In:Ther-riault, J.C, ed., The Gulf of St. Lawrence: small ocean or big estuary? — Canadian Special Publication of Fisheries and Aquatic Sciences113: 189–199.Google Scholar
  64. de Vernal, A.;Eynaud, F.;Henry, M.;Hillaire-Marcel, C;Londeix, L.;Mangin, S.;Matthiessen, J.;Marret, F.;Radi, T.;Rochon, A.;Solignac, S. &Turon, J.-L. in press. Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages. — Marine Geology.Google Scholar
  65. de Vernal, A.;Giroux, L. &Hillaire-Marcel, C. 1991. Distribution des palynomorphes et flux de matière organique dans un milieu de transition. Exemple de l’Estuaire et du Golf du St Laurent. — Palynosciences1: 145–157.Google Scholar
  66. de Vernal, A.;Goyette, C. &Rodrigues, CG. 1989. Contribution palynostratigraphique (dinokystes, pollen et spores) a la connaissance de la mer de Champlain: coupe de Saint-Césaire, Québec. — Canadian Journal of Earth Sciences26: 2450–2464.Google Scholar
  67. de Vernal, A.;Henry, M.;Matthiessen, J.;Mudie, P.J.;Rochon, A.;Boessenkool, K.P.;Eynaud, F.;Kari Grøsfjeld, J.G.;Hamel, D.;Harland, R.;Head, M.J.;Kunz-Pirrung, M.;Levac, E.;Loucheur, V.;Peyron, O.;Pospelova, V.;Radi, T.;Turon, J.-L. &Voronina, E. 2001. Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new n=677 data base and its application for quantitative palaeoceanographic reconstruction. — Journal of Quaternary Science16: 681–698.Google Scholar
  68. de Vernal, A.;Londeix, L.;Mudie, P.J.;Harland, R.;Morzadec-Kerfourn, M.T.;Turon, J.L. &Wrenn, J.H. 1992. Quaternary organic-walled dinoflagellate cysts of the North Atlantic Ocean and adjacent seas: Ecostratigraphy and biostratigraphy. — In: Head, M.J. & Wrenn, J.H., eds., Neogene and Quaternary dinoflagellate cysts and acritarchs: 289–328, Dallas (American Association of Stratigraphic Palynologists).Google Scholar
  69. de Vernal, A.;Rochon, A.;Turon, J.-L. &Matthiessen, J. 1997. Organic-walled dinoflagellate cysts: palynological tracers of sea-surface conditions in middle to high latitude marine environments. — Geobios30: 905–920.Google Scholar
  70. de Vernal, A.;Turon, J.-L. &Guiot, J. 1993. Dinoflagellate cyst distribution in high-latitude marine environments and quantitative reconstruction of sea-surface salinity, temperature, and seasonality. — Canadian Journal of Earth Sciences31: 48–62.Google Scholar
  71. Devillers, R. &de Vernal, A. 2000. Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in rela tion to nutrient content and productivity in surface waters. — Marine Geology166: 103–124.Google Scholar
  72. Dodge, J.D. 1982. Marine Dinoflagellates of the British Isles. — 303 p., London (Her Majesty’s Stationary Office).Google Scholar
  73. Dodge, J.D. 1985. Atlas of Dinoflagellates. — 119 p., London (Farrand Press).Google Scholar
  74. Dodge, J.D. 1989. Some revisions of the family Gonyaulacaceae (Dinophyceae) based on a scanning electron microscope study. — Botanica Marina32: 275–298.Google Scholar
  75. Dodge, J.D. 1993. Armoured dinoflagellates in the NE Atlantic during the BOFS cruises, 1988–1990. — Journal of Plankton Research15: 465–483.Google Scholar
  76. Dodge, J.D. 1994. Biogeography of marine armoured dinoflagellates and dinocysts in the NE Atlantic and North Sea. — Review of Palaeobotany and Palynology84: 169–180.Google Scholar
  77. Dodge, J.D. &Harland, R. 1991. The distribution of planktonic dinoflagellates and their cysts in the eastern and northeastern Atlantic Ocean. — New Phytologist118: 593–603.Google Scholar
  78. Dodge, J.D. &Marshall, H.G. 1994. Biogeographic analysis of the armored planktonic dinoflagellateCeratium in the North Atlantic and adjacent seas. — Journal of Phycology30: 905–922.Google Scholar
  79. Dodge, J.D. &Toriumi, S. 1993. A taxonomic revision of the Diplosalis group (Dinophyceae). — Botanica Marina36: 137–147.Google Scholar
  80. Drebes, G. 1974. Marines Phytoplankton. Eine Auswahl der Helgoländer Planktonalgen (Diatomeen, Peridineen). — 186 p., Stuttgart (Thieme).Google Scholar
  81. Druzhkov, N.V. &Makarevich, P.R. 1999. Comparison of the phytoplankton assemblages of the south-eastern Barents Sea and south-western Kara Sea: phytogeographical status of the regions. — Botanica Marina42: 103–115.Google Scholar
  82. Druzhkov, N.V.;Makarevich, P.R. &Druzhkova, E.I. 2001. Phytoplankton in the south-western Kara Sea: composition and distribution. — Polar Research20: 95–108.Google Scholar
  83. Dunbar, M.J. 1951. Eastern Arctic waters. — Bulletin of Fishery Research Board of Canada88: 1–131.Google Scholar
  84. Dunbar, M.J. 1979. The relation between the oceans. — In:Van der Spoel, S. &Pierrot-Bults, A.C., eds., Zoogeography and diversity of plankton: 112–125, London (Arnold).Google Scholar
  85. Edwards, L.E. &Andrle, V.A.S. 1992. Distribution of selected dinoflagellate cysts in modern marine sediments. — In:Head, M.J. &Wrenn, J.H., eds., Neogene and Quaternary dinoflagellate cysts and acritarchs: 259–288, Dallas (American Association of Stratigraphic Palynologists Foundation).Google Scholar
  86. Eilertsen, H.C. &Taasen, J.P. 1984. Investigations on the plankton community of Balsfjorden, northern Norway. The phytoplankton 1976–1978. Environmental factors, dynamics of growth, and primary production. — Sarsia69: 1–15.Google Scholar
  87. Eilertsen, H.C;Schei, B. &Taasen, J.P. 1981. Investigations on the plankton community of Balsfjorden, northern Norway. — Sarsia66:129–141.Google Scholar
  88. Eilertsen, H.C;Taasen, J.P. &Weslawski. J.M. 1989. Phytoplankton studies in the fjords of West Spitsbergen: physical environment and production in spring and summer. — Journal of Plankton Research11: 1245–1260.Google Scholar
  89. El-Sayed, S.Z. 1985. Plankton of the Antarctic seas. — In:Bonner, W.N. &Walton, D.W.H., eds., Antarctica: 135–153, Oxford (Pergamon Press).Google Scholar
  90. Elbrächter, M. 1991. Faeces production by dinoflagellates and other small flagellates. — Marine Microbial Food Webs5: 189–204.Google Scholar
  91. Elbrächter, M. 1994. Green autofluorescence — a new taxonomic feature for living dinoflagellate cysts and vegetative cells. — Review of Palaeobotany and Palynology84: 101–105.Google Scholar
  92. Elbrächter, M. 2003. Dinophyte reproduction: progress and conflicts. — Journal of Phycology39: 629–632.Google Scholar
  93. Ellegaard, M. 2000. Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark. — Review of Palaeobotany and Palynology109: 65–81.Google Scholar
  94. Ellegaard, M.;Christensen, N.F. &Moestrup, Ø.1994. Dinoflagellate cysts from Recent Danish marine sediments. — European Journal of Phycology29: 183–194.Google Scholar
  95. Ellegaard, M.;Daugbjerg, N.;Rochon, A.;Lewis, J. &Harding, I. 2003. Morphological and LSU rDNA sequence variation within theGonyaulax spinifera-Spiniferites group (Dinopgyceae) and proposal ofG. elongata comb, nov andG. membranacea comb. nov. — Phycologia42: 151–164.Google Scholar
  96. Ellegaard, M.;Lewis, J. &Harding, I. 2002. Cyst-theca relationship, life cycle, and effects of temperature and salinity on the cyst morphology ofGonayaulax baltica sp. nov. (Dinophyceae) from the Baltic Sea area. — Journal of Phycology38: 775–789.Google Scholar
  97. Eppley, R.W.;Rogers, J.N. &McCarthy, J.J. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. — Limnology and Oceanography14: 912–920.Google Scholar
  98. Erdtman, G. 1954. On pollen grains and dinoflagellate cysts in the Firth of Gullmarn, SW. Sweden. — Botaniska Notiser2: 103–111.Google Scholar
  99. Esper, O. &Zonneveld, K.A.F. 2002. Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre. — Marine Micropaleontology46: 177–208.Google Scholar
  100. Evitt, W.R. 1961. Observations on the morphology of fossil dinoflagellates. — Micropaleontology7: 385–420.Google Scholar
  101. Evitt, W.R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I and II. — Proceedings of the National Academy of Sciences, Washington49: 158–164.Google Scholar
  102. Evitt, W.R. 1985. Sporopollenin dinoflagellate cysts: their morphology and interpretation. — 333 p., Dallas (American Association of Stratigraphie Palynologists).Google Scholar
  103. Evitt, W.R. &Davidson, S.E. 1964. Dinoflagellate studies. I. Dinoflagellate cysts and thecae. — Stanford University Publications, Geological Sciences10: 1–12.Google Scholar
  104. Evitt, W.R. &Wall, D. 1968. Dinoflagellate studies IV. Theca and cyst of recent freshwater Peridinium limbatum (Stokes) Lemmermann. — Stanford University Publications, Geological Sciences12: 1–15.Google Scholar
  105. Evitt, W.R.;Gocht, H. &Netzel, H. 1985.Gonyaulax cysts from lake Zürich sediments. — Review of Palaeobotany and Palynology45: 35–46.Google Scholar
  106. Evitt, W.R.;Lentin, J.K.;Milljoud, M.E. &Williams, G.L. 1977. Dinoflagellate cysts terminology. — Geological Survey of Canada Bulletin Paper76-24: 11.Google Scholar
  107. Fensome, R.A. &Guerstein, G.R. 2000. The Eisenack Catalog of Fossil Dinoflagellates Vol. 5, New Series. — 218 p., Stuttgart (Schweizerbart).Google Scholar
  108. Fensome, R.A. &Williams, G.L. 2004. The Lentin and Williams Index of fossil dinoflagellates. — American Association of Stratigraphic Palynologists, Contribution Series42: 1–909.Google Scholar
  109. Fensome, R.A.;Gocht, H.;Stover, L.E. &Williams, G.L. 1991. The Eisenack Catalog of Fossil Dinoflagellates Vol. 1, New Series. — 828 p., Stuttgart (Schweizerbart).Google Scholar
  110. Fensome, R.A.;Gocht, H.;Stover, L.E. &Williams, G.L. 1993a. The Eisenack Catalog of Fossil Dinoflagellates Vol. 2, New Series. — 632 p., Stuttgart (Schweizerbart).Google Scholar
  111. Fensome, R.A.;Gocht, H. &Williams, G.L. 1995. The Eisenack Catalog of Fossil Dinoflagellates Vol. 3, New Series, — 1463 p., Stuttgart (Schweizerbart).Google Scholar
  112. Fensome, R.A.;Gocht, H. &Williams, G.L. 1996a. The Eisenack Catalog of Fossil Dinoflagellates Vol. 4, New Series. — 540 p., Stuttgart (Schweizerbart).Google Scholar
  113. Fensome, R.A.;Riding, J.B. &Taylor, F.J.R. 1996b. Dinoflagellates. — In:Jansonius, J. &McGregor, D.C, eds., Palynology: principles and applications: 107–169, Dallas (American Association of Stratigraphie Palynologists).Google Scholar
  114. Fensome, R.A.;Taylor, F.J.R.;Norris, G.;Sarjeant, W.A.S.;Wharton, D.I. &Williams, G.L. 1993b. A classification of living and fossil dinoflagellates. — Micropaleontology, Special Publication7: 1–351.Google Scholar
  115. Franks, P.J.S. &Anderson, D.M. 1992. Toxic phytoplankton blooms in the southwestern Gulf of maine: testing hypotheses of physical control using historic data. — Marine Biology112: 165–174.Google Scholar
  116. Fritz, L. &Nass, M. 1992. Development of the endoparasitic dinoflagellateAmoebophrya ceratii within host dinoflagellate species. — Journal of Phycology28: 312–320.Google Scholar
  117. Fukuyo, Y.;Sako, Y.;Matsuoka, K.;Imai, I.;Takahasi, M. &Watanabe, M. 2003. Biological character of red-tide organisms. — In:Okaichi, T., ed., Red Tides: 61–178, Dordrecht (Luwer Academic Publishers).Google Scholar
  118. Gaarder, K.R. 1954. Dinoflagellatae from the “Michael Sars” North Atlantic Deep-Sea Expedition 1910. — In:Murray, J. &Hjort, J., eds., Report on the scientific results of the “Michael Sars” North Atlantic Deep-Sea Expedition, 1910: 1–62, Bergen (Trustees of the University of Bergen).Google Scholar
  119. Gaines, G. &Elbrächter, M. 1987. Heterotrophic nutrition. — In:Taylor, F.J.R., ed., The biology of dinoflagellates: 224–268, Oxford (Blackwell Scientific Publications).Google Scholar
  120. Gaines, G. &Taylor, F.J.R. 1984. Extracellular digestion in marine dinoflagellates. — Journal of Plankton Research6: 1057–1061.Google Scholar
  121. Garrison, D.L. 1991. Antarctic sea ice biota. — American Zoology31: 17–33.Google Scholar
  122. Garrison, D.L. &Buck, K.R. 1989. The biota of Antarctic pack ice in the Weddell Sea and Antarctic Peninsula regions. — Polar Biology10:211–219.Google Scholar
  123. Gascard, J.-C.;Richez, C. &Rouault, C. 1995. New insights on large-scale oceanography in Fram Strait: The West Spitsbergen Current. — In:Smith, W.O. &Grebmeier, J.M., eds., Arctic Oceanography: Marginal Ice Zones and Continental Shelves: 131–182, Washington, DC (American Geophysical Union).Google Scholar
  124. Godhe, A.;Norén, F.;Kuylenstierna, M.;Ekberg, C. &Karlson, B. 2001. Relationship between planktonic dinoflagellate abundance, cysts recovered in sediment traps and environmental factors in the Gullmar Fjord, Sweden. — Journal of Plankton Research23: 923–938.Google Scholar
  125. Goodman, D.K. 1987. Dinoflagellate cysts in ancient and modern sediments. — In:Taylor, F.J.R., ed., The biology of dinoflagellates: 649–722, Oxford (Blackwell Scientific Publications).Google Scholar
  126. Gordeev, V.V.;Martin, J.M.;Sidorov, I.S. &Sidorova, M.V. 1996. A reassessment of the Eurasian river input of water, sediment, major elements and nutrients to the Arctic Ocean. — American Journal of Science296: 664–691.Google Scholar
  127. Gradinger, R. 1999. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. — Marine Biology133 (4): 745–754.Google Scholar
  128. Gradinger, R.R. &Baumann, M.E.M. 1991. Distribution of phytoplankton communities in relation to the large-scale hydrographical regime in the Fram Strait. — Marine Biology111: 311–321.Google Scholar
  129. Gradinger, R. &Ikavälko, J. 1998. Organism incorporation into newly forming Arctic sea ice in the Greenland Sea. — Journal of Plankton Research20: 871–886.Google Scholar
  130. Gran, H.H. 1902. Das Plankton des Norwegischen Nordmeeres von biologischen und hydrographischen Gesichtspunkten behandelt. — Rep. Norweg. Fish. Mar. Invest.2: 1–222.Google Scholar
  131. Gran, H.H. 1904. Diatomaceae from the ice-floes and plankton of the Arctic Ocean. — In:Nansen, F., ed., The Norwegian North Polar Expedition 1893–1896: 1–85, London (Longmans & Co).Google Scholar
  132. Greuter, W.;McNeill, J.;Barrie, F.R.;Burdet, H.M.;Demoulin, V.;Filgueiras, T.S.;Nicolson, D.H.;Silva, P.C.;Skog J.E.;Trehane, P.;Turland, N.J. &Kawksworth, D.L. 2000. International Code of Botanical Nomenclature (St. Louis Code). — 474 p., Königstein (Koeltz).Google Scholar
  133. Haeckel, E. 1890. Plankton-Studien. Vergleichende Untersuchungen über die Bedeutung und Zusammensetzung der pelagischen Fauna und Flora. — 105 p., Jena (G. Fischer).Google Scholar
  134. Haecky, P.;Jonsson, S. &Andersson, A. 1998. Influence of sea ice on the composition of the spring phytoplankton bloom in the northern Baltic Sea. — Polar Biology20: 1–8.Google Scholar
  135. Halldal, P. 1953. Phytoplankton investigations from weather ship M in the Norwegian Sea, 1948–49. — Hvalrådets Skrifter38: 1–91.Google Scholar
  136. Hallegraeff, G.M. 2003. Harmful algal blooms: a global overview. — In:Hallegraeff, G.M.;Anderson, D.M. &Cemballa, A.D., eds., Manual on harmful marine microalgae: 25–49, Paris (UNESCO Publishing).Google Scholar
  137. Hallegraeff, G.M. &Bolch, C.J. 1992. Transport of diatom and dinoflagellate resting spores in ships’ ballast water: implications for plankton biogeography and aquaculture. — Journal of Plankton Research14: 1067–1084.Google Scholar
  138. Hallegraeff, G.M.;Bolch, C.J.;Blackburn, S.I. &Oshima, Y. 1991. Species of the toxigenic dinoflagellate genusAlexandrium in southeastern Australian waters. — Botanica Marina34: 575–587.Google Scholar
  139. Hamel, D.;de Vernal, A.;Gosselin, M. &Hillaire-Marcel, C. 2002. Organic-walled microfossils and geochemical tracers: sedimentary indicators of productivity changes in the North Water and northern Baffin Bay during the last centuries. — Deep-Sea Research Part II: Topical Studies in Oceanography49: 5277–5295.Google Scholar
  140. Hansen, P.J. 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. — Marine Ecology Progress Series73: 253–261.Google Scholar
  141. Hansen, B.;Christiansen, S. &Pedersen, G. 1996. Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chain. — Polar Biology16: 115–128.Google Scholar
  142. Hansen, B.W.;Nielsen, T.G. &Levinsen, H. 1999. Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. III. Mesozooplankton. — Aquatic Microbial Ecology16: 233–249.Google Scholar
  143. Harland, R. 1973. Quaternary (Flandrian?) dinoflagellate cysts from the Grand Banks, of Newfoundland, Canada. — Review of Paleobotany and Palynology16: 229–242.Google Scholar
  144. Harland, R. 1982a. Recent dinoflagellate cyst assemblages from the southern Barents Sea. — Palynology6: 9–18.Google Scholar
  145. Harland, R. 1982b. A review of Recent and Quaternary organic-walled dinoflagellate cysts of the genusProtoperidinium. — Palaeontology25: 369–397.Google Scholar
  146. Harland, R. 1983. Distribution maps of Recent dinoflagellate cysts in bottom sediments from the North Atlantic Ocean and adjacent seas. — Palaeontology26: 321–387.Google Scholar
  147. Harland, R. 1988. Dinoflagellates, their cysts and Quaternary stratigraphy. — New Phytologist108: 111–120.Google Scholar
  148. Harland, R. 1994. Dinoflagellate cysts and climate change through the Neogene. — In:Boulter, M.C. &Fisher, U.C., eds., Cenozoic Plants and Climates of the Arctic: 93–105, Berlin (Springer).Google Scholar
  149. Harland, R. &Pudsey, C.J. 1999. Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. — Marine Micropaleontology37: 77–99Google Scholar
  150. Harland, R. &Sharp, J. 1986. ElongateSpiniferites cysts from North Atlantic bottom sediments. — Palynology10: 25–34.Google Scholar
  151. Harland, R.;Nordberg, K. &Filipsson, H.L. 2004. The seasonal occurrence of dinoflagellate cysts in surface sediments from Koljo Fjord, west coast of Sweden — a note. — Review of Paleobotany and Palynology128: 107–117.Google Scholar
  152. Harland, R.;Pudsy, C.J.;Howe, J.A. &Fitzpatrick, M.E.J. 1998. Recent dinoflagellate cysts in a transect from the Falkland Trough to the Weddell Sea, Antarctica. — Palaeontology41: 1093–1131.Google Scholar
  153. Harland, R.;Reid, P.C.;Dobell, P. &Norris, G. 1980. Recent and subrecent dinoflagellate cysts from the Beaufort Sea, Canadian Arctic. — Grana19: 211–225.Google Scholar
  154. Hasle, G.R. 1986. Problems in open-ocean phytoplankton biogeography. — In:Pierrot-Bults, A.C.;Van der Spoel, S.;Zahuranec, B.J. &Johnson, R.K., eds., Pelagic biogeography: 118–125, Paris (UNESCO).Google Scholar
  155. Hasle, G. R. &Heimdal, B.R. 1998. The net phytoplankton in Kongsfjorden, Svalbard, July 1988, with general remarks on species composition. — Polar Research17: 31–52.Google Scholar
  156. Head, M.J. 1996. Modern dinoflagellate cysts and their biological affinities. — In:Jansonius, J. &McGregor, D.C., eds., Palynology: principles and applications: 1197–1248, Dallas (American Association of Stratigraphic Palynologists).Google Scholar
  157. Head, M.J. 2003.Echinidinium zonneveldiae sp. nov., a dinoflagellate from the Late Pleistocene of the Baltic Sea, northern Europe. — Journal of Micropaleontology21: 169–173.Google Scholar
  158. Head, M.J.;Harland, R. &Matthiessen, J. 2001. Cold marine indicators of the late Quaternary: the new dinoflagellate cyst genusIslandinium and related morphotypes. — Journal of Quaternary Science16: 621–636.Google Scholar
  159. Head, M.J.;Lewis, J. &de Vernal, A. in press. The cyst of the calcareous dinoflagellateScrippsiella trifida, and the fossil record of its organic wall. — Journal of Paleontology.Google Scholar
  160. Heimdal, B.R. 1974. Composition and abundance of phytoplankton in the Ullsfjord area, North Norway. — Astarte7: 17–42.Google Scholar
  161. Heimdal, R.B. 1983. Phytoplankton and nutrients in the waters northwest of Spitsbergen in the autumn of 1979. — Journal of Plankton Research5: 901–918.Google Scholar
  162. Heimdal, B.R. 1989. Arctic Ocean phytoplankton. — In:Herman, Y., ed., The Arctic Seas: Climatology, Oceanography, Geology, and Biology: 193–222, New York (Van Nostrand Reinhold Company).Google Scholar
  163. Heiskanen, A.-S. 1993. Mass encystment and sinking of dinoflagellates during a spring bloom. — Marine Biology116: 161–167.Google Scholar
  164. Heiskanen, A.-S. &Keck, A. 1996. Distribution and sinking rates of phytoplankton, detritus, and particulate biogenic silica in the Laptev Sea and Lena River (Arctic Siberia). — Marine Chemistry53: 229–245.Google Scholar
  165. Hillaire-Marcel, C;de Vernal, A.;Lucotte, M.;Mucci, A.;Bilodeau, G.;Rochon, A.;Vallieres, S. &Wu, G. 1994. Productivité et flux de carbone dans la mer du Labrador au cours des derniers 40 000 ans. — Canadian Journal of Earth Science31: 139–158.Google Scholar
  166. Hinnebusch, A.G.;Klotz, L.C.;Blanken, R.L. &Loeblich, A.R. III 1981. An evaluation of the phylogenetic position of the dinoflagellateCrypthecodinium cohnii based on 5S rRNA characterization. — Journal of Molecular Evolution17: 334–347.Google Scholar
  167. Hirche, H.-J.;Baumannn, M.E.M.;Kattner, G. &Gradinger, R. 1991. Plankton distribution and the impact of copepod grazing on primary production in Fram Strait, Greenland Sea. — Journal of Marine Systems2: 477–494.Google Scholar
  168. Honjo, S. 1976. Coccoliths: production, transportation and sedimentation. — Marine Micropaleontology1: 65–79.Google Scholar
  169. Honjo, S. 1990. Particle fluxes and modern sedimentation in the Polar Oceans. — In:Smith, W.O. jr., ed., Polar Oceanography, Part B: Chemistry, Biology, and Geology: 687–739, San Diego (Academic Press).Google Scholar
  170. Honjo, S. 1996. Fluxes of particles to the interior of the open oceans. — In:Ittekkot, V.;Schäfer, P.;Honjo, S. &Depetris, P.J., eds., Particle flux in the ocean: 91–154, Chichester (John Wiley & Sons).Google Scholar
  171. Honjo, S.;Manganini, S.J. &Wefer, G. 1988. Annual particle flux and a winter outburst of sedimentation in the northern Norwegian Sea. — Deep-Sea Research35: 1223–1234.Google Scholar
  172. Hop, H.;Pearson, T.;Hegseth, E.N.;M.Kovacs, K.;Wiencke, C;Kwasniewski, S,;Eiane, K.;Mehlum, F.;Gulliksen, B.;Wlodarska-Kowalczuk, M.;Lydersen, C;Weslawski, J.M.;Cochrane, S.;Gabrielsen, G.W.;J.G.Leakey, R.;Lønne, O.J.;Zajaczkowski, M.;Falk-Petersen, S.;Kendall, M.;Wängberg, S.-Å.;Bischof, K.;Y.Voronkov, A.;A.Kovaltchouk, N.;Wiktor, J.;Michael Poltermann;Prisco, G. de;Papucci, C. &Gerland, S. 2002. The marine ecosystem of Kongsfjorden, Svalbard. — Polar Research21: 167–208.Google Scholar
  173. Hoppenrath, M. 2000. Morphology and taxonomy of six marine sanddwellingAmphidiniopsis species (Dinophyceae, Peridiniales), four of them new, from the German Bight, North Sea. — Phycologia39: 482–497.Google Scholar
  174. Hoppenrath, M. &Okolodkov, Y.B. 2000.Amphidinium glabrum sp. nov. (Dinophyceae) from the North German Wadden Sea and European Arctic sea ice: morphology, distribution, ecology. European Journal of Phycology35: 61–67.Google Scholar
  175. Horner, R. 1985. Ecology of sea ice microalgae. — In:Horner, R.A., ed., Sea Ice Biota: 83–103, Boca Raton (CRC Press).Google Scholar
  176. Horner, R.A. 1989. Arctic sea-ice biota. — In:Hermann, Y., ed., The Arctic Seas. Climatology, Oceanography, Geology, and Biology: 123–146, New York (Van Nostrand Reinhold Company).Google Scholar
  177. Horner, R.;Ackley, S.F.;Dieckmann, GS.;Gulliksen, B.;Hoshiai, T.;Legendre, L.;Melnikov, I.A.;Reeburgh, W.S.;Spindler, M. &Sullivan, C.W. 1992. Ecology of sea ice biota: 1. Habitat, terminology, and methology. — Polar Biology12: 417–427.Google Scholar
  178. Hsiao, S.I.C. 1983. A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. — Nova Hedwigia37: 225–313.Google Scholar
  179. Hsiao, S.I.C. 1980. Quantitative composition, distribution, community structure and standing stock of sea ice microalgae in the Canadian Arctic. — Arctic33: 768–793.Google Scholar
  180. Hsiao, S.I.C. 1992. Dial, tidal and vertical variations of phytoplankton and its environment in Frobisher Bay. — Arctic45: 327–337.Google Scholar
  181. Huber, G. &Nipkow, F. 1922. Experimentelle Untersuchungen über die Entwicklung vonCeratium hirundinella O.F.M. — Zeitschrift für Botanik14: 337–371.Google Scholar
  182. Huber, G. &Nipkow, F. 1923. Experimentelle Untersuchungen über die Entwicklung und Formbildung vonCeratium hirundinella O.F.M. — Flora116: 114–215.Google Scholar
  183. Hunt, CO.;Andrews, M.V. &Gilbertson, D.D. 1985. Late Quaternary freshwater dinoflagellate cysts from the British Isles. — Journal of Micropalaeontology4: 101–109.Google Scholar
  184. Ikävalko, J. &Gradinger, R. 1997. Flagellates and heliozoans in the Greenland sea ice studied alive using light microscopy. — Polar Biology17:473–481.Google Scholar
  185. Indelicato, S.R. &Loeblich, A.R.I. 1986. A revision of the marine peridinioid genera (Pyrrhophyta) utilizing hypothecal-cingular plate relationships as a taxonomic guideline. — Japanese Journal of Phycology (Sôrui)34: 153–162.Google Scholar
  186. Ishikawa, A. &Taniguchi, A. 1996. Contribution of benthic cysts to the population dynamics ofScrippsiella spp. (Dinophyceae) in Onagawa Bay, northeast Japan. — Marine Ecology Progress Series140: 169–178.Google Scholar
  187. Jacobson, D.M. &Anderson, D.M. 1986. Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. — Journal of Phycology22: 249–258.Google Scholar
  188. Jacobson, D.M. &Anderson, D.M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. — Journal of Phycology32: 279–285.Google Scholar
  189. Jakobsen, H.;Hansen, P. &Larsen, J. 2000. Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. — Marine Ecology Progress Series201: 121–128.Google Scholar
  190. Jakobsson, M. 2002. Hypsometry and volume of the Arctic Ocean and its constituent seas. — Geochemistry Geophysics Geosystems23: 18.Google Scholar
  191. Jakobsson, M.;Cherkis, N.;Woodward, J.;Coakley, B. &Macnab, R. 2000. A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers. — EOS Transactions of the American Geophysical Union81: 89, 93, 96.Google Scholar
  192. Joseph, J.D. 1975. Identification of 3,6,9,12,15-octadecapentaenoic acid in labratory cultured photosynthetic dinoflagellates. — Lipids10: 395–403.Google Scholar
  193. Keafer, B.;Buesseler, K.O. &Anderson, D.M. 1992. Burial of living dinoflagellate cysts in estuarine and nearshore sediments. — Marine Micropaleontology20: 147–161.Google Scholar
  194. Keck, A.;Wiktor, J.;Hapter, R. &Nilsen, R. 1999. Phytoplankton assemblages related to physical gradients in an arctic, glacier-fed fjord in summer. — ICES Journal of Marine Science56: 203–214.Google Scholar
  195. Kiørboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. — Advances in Marine Biology29: 1–72.Google Scholar
  196. Kirst, G.O. &Wiencke, C. 1995. Ecophysiology of polar algae. — Journal of Phycology31: 181–199.Google Scholar
  197. Kokinos, J.p. &Anderson, D.M. 1995. Morphological development of resting cysts in cultures of the marine dinoflagellateLingulodinium polyedrum (=L. machaerophorum). — Palynology19: 143–166.Google Scholar
  198. Kokinos, J.P.;Eglinton, T.I.;Goñi, M.A.;Bon, J.J.;Martoglio, P.A. &Anderson, D.M. 1998. Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagelate resting cyst. — Organic Geochemistry28: 265–288.Google Scholar
  199. Kouli, K.;Brinkhuis, H. &Dale, B. 2001.Spiniferites cruciformis: a freshwater dinoflagellate cysts? — Review of Paleobotany and Palynology113: 273–286.Google Scholar
  200. Kremp, A. 2000a. Morphology and germination pattern of the resting cyst ofPeridinella catenata (Dinophyceae) from the Baltic Sea. — Phycologia39: 183–186.Google Scholar
  201. Kremp, A. 2000b. Distribution, dynamics and in situ seeding potential ofScrippsiella hangoei (Dinophyceae) cyst populations from the Baltic Sea. — Journal of Plankton Research22: 2155–2169.Google Scholar
  202. Kremp, A. &Anderson, D.M. 2000. Factors regulating germination of resting cysts of the spring bloom dinoflagellateScrippsiella hangoei from the northern Baltic Sea. — Journal of Plankton Research22: 1311–1327.Google Scholar
  203. Kremp, A. &Heiskanen, A.-S. 1999. Sexuality and cyst formation of the spring-bloom dinoflagellateScrippsiella hangoei in the coastal northern Baltic Sea. — Marine Biology134: 771–777.Google Scholar
  204. Kumazaki, T.;Hori, H. &Osawa, S. 1983. Phylogeny of Protozoa deduced from 5S rRNA sequences. — Journal of Molecular Evolution19: 411–419.Google Scholar
  205. Kunz-Pirrung, M. 1998. Rekonstruktion der Oberflächenwassermassen der östlichen Laptevsee im Holozän anhand von aquatischen Palynomorphen. — Berichte zur Polarforschung281: 117.Google Scholar
  206. Kunz-Pirrung, M. 2001. Dinoflagellate cyst assemblages in surface Sediments of the Laptev Sea region (Arctic Ocean) and their relationship to hydrographic conditions. — Journal of Quaternary Science16: 637–649.Google Scholar
  207. Larionov, V.V. &Makarevich, P.R. 2001. The taxonomic and ecological descriptions of the phytoplankton assemblages from the Yenisei Bay and adjacent waters of the Kara Sea in September 2000. — In:Stein, R. &Stepanets, O., eds., The German-Russian Project on Siberian River Run-off (SIRRO): Scientific Cruise Report of the Kara-Sea Expedition “SIRRO” of RV “Akademik Boris Petrov” and first results: 48–62, Bremerhaven (Alfred Wegener Institute for Polar and Marine Research).Google Scholar
  208. Larsen, J. &Sournia, A. 1991. The diversity of heterotrophic dinoflagellates. — In:Patterson, D. &Larsen, J., eds., The biology of free-living heterotrophic flagellates: 313–332, Oxford (Clarendon Press).Google Scholar
  209. Larsen, J.;Kuosa, H.;Ikävalko, J.;Kivi, K. &Hällfors, S. 1995. A redescription ofScrippsiella hangoei (Schiller) comb. nov. — a “red tide” dinoflagellate from the northern Baltic. — Phycologia34: 135–144.Google Scholar
  210. Lebour, M.V. 1925. The dinoflagellates of northern seas. — 250 p., Plymouth (Marine Biological Association).Google Scholar
  211. Legendre, L.;Ackley, S.F.;Dieckmann, G.S.;Gulliksen, B.;Horner, R.;Hoshiai, T.;Melnikov, I.A.;Reeburgh, W.S.;Spindler, M. &Sullivan, C.W. 1992. Ecology of sea ice biota. — Polar Biology12: 429–444.Google Scholar
  212. Legendre, L.;Gosselin, M.;Hirche, H.-J.;Kattner, G. &Rosenberg, G. 1993. Environmental conrol and potential fate of size-fractionated phytoplankton production in the Greenland Sea (75°N). — Marine Ecology Progress Series98: 297–213.Google Scholar
  213. Lenaers, G.;Maroteaux, L.;Michot, B. &Herzog, M. 1989. Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA. — Journal of Molecular Evolution29: 40–51.Google Scholar
  214. Lessard, E.J. 1984. Oceanic heterotrophic dinoflagellates: distribution, abundance, and role as microzooplankton. — 144 p., Kingston (University of Rhode Island).Google Scholar
  215. Lessard, E.J. 1991. The trophic role of heterotrophic dinoflagellates in diverse marine environments. — Marine Microbial Food Webs5: 49–58.Google Scholar
  216. Levandowsky, M. &Kaneta, P. 1987b. Behaviour in dinoflagellates. — In:Taylor, F.J.R., ed., The Biology of Dinoflagellates: 360–397, Oxford (Blackwell Scientific Publications).Google Scholar
  217. Levinsen, H.;Nielsen, T.G. &Hansen, B.W. 1999. Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. — Aquatic Microbial Ecology16: 217–232.Google Scholar
  218. Levinsen, H.;Nielsen, T.G. &Hansen, B.W. 2000a. Annual succession of marine pelagic protozoans in Disko Bay, West Greenland, with emphasis on winter dynamics. — Marine Ecology Progess Series206: 119–134.Google Scholar
  219. Levinsen, H.;Turner, J.;Nielsen, T. &Hansen, B. 2000b. On the trophic coupling between protists and copepods in arctic marine ecosystems. — Marine Ecology Progress Series204: 65–77Google Scholar
  220. Lewis, J. 1988. Cysts and sediments:Gonyaulax polyedra (Lingulodinium machaerophorum) in Loch Creran. — Journal of the Marine Biological Association of the United Kingdom68: 701–714.Google Scholar
  221. Lewis, J. 1991. Cyst-theca relationships inScrippsiella (Dinophyceae) and related orthoperidinioid genera. — Botanica Marina34: 91–106.Google Scholar
  222. Lewis, J. &Dodge, J.D. 1987. The cyst-theca relationship ofProtoperidinium americanum (Gran & Braarud) Balech. — Journal of Micropalaeontology6: 113–121.Google Scholar
  223. Lewis, J. &Hallet, R. 1997.Lingulodinium polyedrum (Gonyaulax polyedra) a blooming dinoflagellate. — Oceanography and Marine Biology, An Annual Review35: 97–161.Google Scholar
  224. Lewis, J.;Harris, A.S.D.;Jones, K.J. &Edmonds, R.L. 1999a. Longterm survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. — Journal of Plankton Research21: 343–354.Google Scholar
  225. Lewis, J.;Rochon, A.;Ellegard, M. &Mudie, P.J. 2001. The cysttheca relationship ofBitectatodinium tepikiense (Dinophyceae). — European Journal of Phycology36: 137–146.Google Scholar
  226. Lewis, J.;Rochon, A. &Harding, I. 1999b. Preliminary observations of cyst-theca relationships inSpiniferites ramosus andSpiniferites membranaceus (Dinophyceae). — Grana38: 113–124.Google Scholar
  227. MacKenzie, L. 1998. Examination of mussel stomach contents as a method of diagnosing the potential for DSP-toxin contamination. — In:Reguera, B.;Blanco, J.;Fernández, M.L. &Wyattt, T., eds., Harmful Algae: 237–238, Grafisant, Santiago de Compostela (Xunta de Galicia and IOC of UNESCO).Google Scholar
  228. MacKenzie, L.;de Salas, M.;Adamson, J. &Beuzenberg, V.U. 2004. The dinoflagellate genusAlexandrium (Halim) in New Zealand coastal waters: comparative morphology, toxicity and molecular genetics. — Harmful Algae3: 71–92.Google Scholar
  229. Makarevich, P.R. &Larionov, V.V. 2001. Taxonomic composition and productivity of the microalgal communities of the Ob Bay and Yenisei Bay in the summer 1999. — In:Stein, R. &Stepanets, O., eds., The German-Russian Project on Siberian River Run-off (SIRRO): Scientific Cruise Report of the Kara-Sea Expedition “SIRRO” of RV “Akademik Boris Petrov” and first results: 34–47, Bremerhaven (Alfred Wegener Institute for Polar and Marine Research).Google Scholar
  230. Makarevich, P.R.;Druzhkov, N.V.;Larianov, V.V. &Druzhkova, E.I. 2003. The freshwater phytoplankton biomass and its role in the formation of a highly productive zone on the Ob-Yenisei shallows (southern Kara Sea). — In:Stein, R.;Fahl, K.;Fütterer, D.K.;Galimov, E.M. &Stepanets, O.V., eds., Siberian river run-off in the Kara Sea: Characterization, quantification, variability and environmental significance: 185–193, Proceedings in Marine Science 6, Amsterdam (Elsevier).Google Scholar
  231. Mansour, MP.;Volkman, J.K.;Holdsworth, D.G.;Jackson, A.E. &Blackburn, S.I. 1999. Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. — Phytochemistry50: 541–548.Google Scholar
  232. Marret, F. 1993. Les effets de l’acétolyse sur les assemblages des kystes de dinoflagellés. — Palynoscience2: 267–272.Google Scholar
  233. Marret, F. 1993. Les effets de l’acétolyse sur les assemblages des kystes de dinoflagellés. — Palynoscience2: 267–272.Google Scholar
  234. Marret, F. &de Vernal, A. 1997. Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean. — Marine Micro-paleontology29: 367–392.Google Scholar
  235. Marret, F. &Zonneveld, K.A.F. 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. — Review of Palaeobotany and Palynology125: 1–200.Google Scholar
  236. Marret, F.;de Vernal, A.;Benderra, F. &Harland, R. 2001. Late Quaternary sea-surface conditions at DSDP Hole 594 in the southwest Pacific Ocean based on dinoflagellate cyst assemblages. — Journal of Quaternary Science16: 739–751.Google Scholar
  237. Matsuoka, K. 1985. Archeopyle structure in modern Gymnodinialean dinoflagellate cysts. — Review of Palaeobotany and Palynology44: 217–231.Google Scholar
  238. Matsuoka, K. 1988. Cyst-theca relationships in the diplopsalid group (Peridiniales, Dinophyceae). — Review of Palaeobotany and Palynology56: 95–122.Google Scholar
  239. Matsuoka, K. 1992. Seasonal variability of palynomorphs in a JT-03 sediment trap settled in the Japan Trench. — Bulletin of the Faculty of Liberal Arts, Nagasaki University, Natural Science32: 221–233.Google Scholar
  240. Matsuoka, K. 2001. Latest Pleistocene freshwater microplankton from paleo-lake sediments of Cheju Island, Korea with reference to its depositional environment. — Japanese Journal of Phycology47: 109–118.Google Scholar
  241. Matsuoka, K. &Cho, H.-J. 2000. Morphological variation in cysts of the gymnodinalean dinoflagellatePolykrikos. — Micropaleontology46: 360–364.Google Scholar
  242. Matsuoka, K. &Fukuyo, Y. 2000. Technical guide for modern dinoflagelate cyst study. — 29 p., Tokyo (WESTPAC-HAB Office).Google Scholar
  243. Matsuoka, K. &Fukuyo, Y. 2003. Taxonomy of cysts. — In:Halle-graeff, G.M.;Anderson, D.M. &Cemballa, A.D., eds., Manual on harmful marine microalgae: 563–592, Paris (UNESCO Publishing).Google Scholar
  244. Matsuoka, K.;McMinn, A. &Wrenn, J. 1997. Restudy of the holo-type ofOperculodinium centrocarpum (Deflandre & Cookson) Wall (Dinophyceae) from the Miocene of Australia, and the taxonomy of related species. — Palynology21: 19–33.Google Scholar
  245. Matthiessen, J. 1995. Distribution patterns of dinoflagellate cysts and other organic-walled microfossils in recent Norwegian-Greenland Sea sediments. — Marine Micropaleontology24: 307–334.Google Scholar
  246. Matthiessen, J. 1999. Distribution of palynomorphs in surface sediments from the Ob and Yenisei estuaries (Kara Sea, Arctic Ocean). — In:Matthiessen, J.;Stepanets, O.V.;Stein, R.;Fütterer, D.K. &Galimov, E.M., Hrsg., The Kara Sea Expedition of RV “Akademik Boris Petrov”: First results of a joint Russian-German pilot study: 222–235, Berichte zur Polarforschung300, Bremerhaven (Alfred Wegener Institute for Polar and Marine Research).Google Scholar
  247. Matthiessen, J. &Brenner, W. 1996. Chlorococcalalgen und Dinoflagellaten-Zysten in rezenten Sedimenten des Greifswalder Boddens. — Senckenbergiana Maritima27: 33–48.Google Scholar
  248. Matthiessen, J.;Knies, J.;Nowaczyk, N. &Stein, R. 2001. Late Quaternary dinoflagellate cyst stratigraphy along the Eurasian Continental Margin (Arctic Ocean): Indications of Atlantic water inflow in the last 150,000 years. — Global and Planetary Change31: 65–86.Google Scholar
  249. Matthiessen, J.;Kunz-Pirrung, M. &Mudie, P.J. 2000. Freshwater chlorophycean algae from the Beaufort, Laptev and Kara Seas (Arctic Ocean) as indicators of river runoff. — International Journal of Earth Sciences89: 470–485.Google Scholar
  250. McMinn, A. 1995. Why are there no post-Paleogene dinoflagellate cysts in the Southern Ocean? — Micropaleontology41: 383–386.Google Scholar
  251. McQuoid, M.;Godhe, A. &Nordberg, K. 2002. Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord. — European Journal of Phycology37: 191–201.Google Scholar
  252. Melnikov, I.A. 1997. The Arctic Sea Ice Ecosystem. — 204 p., Amsterdam (Gordon and Breach Science Publishers).Google Scholar
  253. Meunier, A. 1910. Microplankton des Mers de Barents et de Kara. Duc d’Orléans: Campagne arctique de 1907. — 355 p., Bruxelles (Bulens).Google Scholar
  254. Montresor, M.;Lovejoy, C;Orsini, L.;Procaccini, G. &Roy, S. 2003. Bipolar distribution of the cyst-forming dinoflagellatePolarella glacialis. — Polar Biology26: 186–194.Google Scholar
  255. Montresor, M.;Procaccini, G. &Stoecker, D.K. 1999.Polarella glacialis, gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! — Journal of Phycology35: 186–197.Google Scholar
  256. Montresor, M.;Zingone, A. &Sarno, D. 1998. Dinoflagellate cyst production at a coastal Mediterranean site. — Journal of Plankton Research20: 2291–2312.Google Scholar
  257. Morison, J.;Aagaard, K. &Steele, M. 2000. Recent environmental changes in the Arctic: a review. — Arctic53: 359–371.Google Scholar
  258. Morquecho, L. &Lechuga-Devéze, C.H. 2004. Seasonal occurrence of planktonic dinoflagellates and cyst production in relationship to environmental variables in subtropical Bahía Concepcíon, Gulf of California. — Botanica Marina47: 313–322.Google Scholar
  259. Mudie, P.J. 1992. Circum-Arctic Quaternary and Neogene marine palynofloras: Paleoecology and statistical analysis. — In:Head, M.J. &Wrenn, J.H., eds., Neogene and Quaternary dinoflagellate cysts and acritarchs: 347–390, Dallas (American Association of Stratigraphie Palynologists).Google Scholar
  260. Mudie, P.J. 1996. Pellets of dinoflagellate-eating Zooplankton. — In:Jansonius, J. &McGregor, D.C., eds., Palynology: Principles and applications: 1087–1089, Salt Lake City (American Association of Stratigraphie Palynologists).Google Scholar
  261. Mudie, P.J. &Harland, R. 1996. Aquatic Quaternary. — In:Jansonius, J. &McGregor, D.C., eds., Palynology: Principles and applications: 843–877, Dallas (American Association of Stratigraphie Palynologists).Google Scholar
  262. Mudie, P.J. &Rochon, A. 2001. Distribution of dinoflagellate cysts in the Canadian Arctic marine region. — Journal of Quaternary Science16: 603–620.Google Scholar
  263. Mudie, P.J. &Short, S.K. 1985. Marine palynology of Baffin Bay. — In:Andrews, J.T., ed., Quaternary environments: 263–308, Boston (Allen & Unwin).Google Scholar
  264. Mudie, P.J.;Aksu, A.E. &Yasar, D. 2001a. Late Quaternary dinoflagellate cysts from the Black, Marmara and Aegean seas: variations in assemblages, morphology and paleosalinity. — Marine Micropaleontology43: 155–178.Google Scholar
  265. Mudie, P.J.;Harland, R.;Matthiessen, J. &de Vernal, A. 2001b. Marine dinoflagellate cysts and high latitude Quaternary paleoenvironmental reconstructions: an introduction. — Journal of Quaternary Science16: 595–602.Google Scholar
  266. Mudie, P.J.;de Vernal, A. &Head, M.J. 1990. Neogene to Recent palynostratigraphy of circum-Artic basins: Results of ODP Leg 104, Norwegian Sea, Leg 105, Baffin Bay, and DSDP Site 611, Irminger Sea. — In:Bleil, U. &Thiede, J., eds., Geological history of the Polar Oceans: Arctic versus Antarctic: 609–647, Dordrecht (Kluwer Academic Publishers).Google Scholar
  267. Mudie, P.J.;Rochon, A.;Aksu, A.E. &Gillespie, H. 2004. Late glacial, Holocene and modern dinoflagellate cyst assemblages in the Aegean-Marmara-Black Sea corridor: statistical analysis and re-interpretation of the early Holocene Noah’s Flood hypothesis. — Review of Palaeobotany and Palynology128: 143–167.Google Scholar
  268. Mudie, P.J.;Rochon, A. &Levac, E. 2002. Palynological records of red tide-producing species in Canada: past trends and implications for the future. — Palaeogeography, Palaeoclimatology, Palaeoecology180: 159–186.Google Scholar
  269. Mulligan, H.F. 1973. Probable cause for the 1972 red tide in the Cape Ann region of the Gulf of Maine. — Journal of Fisheries Research Board of Canada30: 1363–1366.Google Scholar
  270. Muller-Haeckel, A. 1981. The low-light adapted dinoflagellateGonyaulax catenata. — Sarsia66: 267–272.Google Scholar
  271. Mysak, L.A. 2001. Patterns of Arctic circulation. — Science293: 1269–1270.Google Scholar
  272. Nagai, S.;Matsuyama, Y.;Takayama, H. &Kotani, Y. 2002. Morphology ofPolykrikos kofoidii andP. schwartzii (Dinophyc-eae, Polykrikaceae) cysts obtained in culture. — Phycologia41: 319–327.Google Scholar
  273. NEHRING, S. 1994. Spatial distribution of dinoflagellate resting cysts in recent sediments of Kiel Bight, Germany (Baltic Sea). — Ophelia39: 1–14.Google Scholar
  274. Nehring, S. 1996. Recruitment of planktonic dinoflagellates: Importance of benthic resting stages and resuspension events. — Internationale Revue der Gesamten Hydrobiologie81:513–527.Google Scholar
  275. Nehring, S. 1997. Dinoflagellate resting cysts from Recent German coastal sediments. — Botanica Marina40: 307–324.Google Scholar
  276. Neuer, S. &Cowles, T.J. 1994. Protist herbivory in the Oregon up-welling system. — Marine Ecology Progress Series113: 147–162.Google Scholar
  277. Nielsen, T.G. &Hansen, B.W. 1995. Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom. — Marine Ecology Progress Series125: 239–257.Google Scholar
  278. Nielsen, T.G. &Hansen, B.W. 1999. Plankton community structure and carbon cycling on the west coast of Greenland during the stratified summer situation. I. Hydrography, phytoplankton and bacterioplankton. — Aquatic Microbiology and Ecology16: 205–216.Google Scholar
  279. Nielsen, T.G.;Løkkegaard, B.;Richarson, K.;Pedersen, F.B. &Hansen, L. 1993. Structure of plankton communites in the Dogger Bank area (North Sea) during a stratified situation. — Marine Ecology Progres Series117: 241–248.Google Scholar
  280. Nordli, E. 1951. Resting spores inGoniaulax polyedra Stein. — Nytt Magasin for Naturvidenskapene88: 207–212.Google Scholar
  281. Norris, G. &McAndrews, J.H. 1970. Dinoflagellate cyst from postglacial lake muds, Minnesota (U.S.A.). — Review of Paleobotany and Palynology10: 131–156.Google Scholar
  282. Nöthig, E.-M. &Bodungen, B.V. 1989. Occurrence and vertical flux of faecal pellets of probably protozoan origin in the southeastern Weddell Sea (Antarctica). — Marine Ecology Progress Series56: 281–289.Google Scholar
  283. Nöthig, E.-M. &Gowing, M.M. 1991. Late winter abundance and distribution of Phaeodarian radiolarians, other large protozooplankton and copepod nauplii in the Weddell Sea, Antarctica. — Marine Biology111:473–484.Google Scholar
  284. Nöthig, E.-M.;Bodungen, B.V. &Sui, Q. 1991. Phyto-and protozooplankton biomass during austral summer in surface waters of the Weddell Sea and vicinity. — Polar Biology11: 293–304.Google Scholar
  285. Nöthig, E.-M.;Okolodkov, Y.;Larianov, V.V. &Makarevich, P.R. 2003. Phytoplankton distribution in the inner Kara Sea: A comparison of three summer investigations. — In:Stein, R.;Fahl, K.;Fütterer, D.K.;Galimov, E.M. &Stepanets, O.V., eds., Siberian river run-off in the Kara Sea: Characterization, quantification, variability and environmental significance: 163–183, Procceedings in Marine Science6, Amsterdam (Elsevier).Google Scholar
  286. Nuzzo, L. &Montresor, M. 1999. Different excystment patterns in two calcareous cyst-producing species of the dinoflagellate genusScrippsiella. — Journal of Plankton Research21: 2009–2018.Google Scholar
  287. Okolodkov, Y.B. 1992. Cryopelagic flora of the Chukchi Sea, East Siberian and Laptev Seas. — Proceedings NIPR Symposium Polar Biology5: 28–43.Google Scholar
  288. Okolodkov, Y.B. 1993. Algae in the annual sea ice at Hooker Island, Franz Josf Land, in August 1991. — Polish Polar Research14: 25–32.Google Scholar
  289. Okolodkov, Y.B. 1996. Biogeography of arctic-boreal and bipolar dinoflagellates. — Botanical Journal, Russian Academy of Sciences81: 18–30.Google Scholar
  290. Okolodkov, Y.B. 1997a. Algae in melt pools. — In:Stein, R. &Fahl, K., eds., Scientific cruise report of the Arctic Expedition ARK-XIII/2 of RV “Polarstern” in 1997: 52–53, Berichte zur Polarforschung225, Bremerhaven (Alfred Wegener Institute for Polar and Marine Research).Google Scholar
  291. Okolodkov, Y.B. 1997b. Phytoplankton: Studies on the biodiversity, taxonomy, community comparison and biogeography. — In:Stein, R. &Fahl, K., eds., Scientific Cruise Report of the Arctic Expedition ARK-XIII/2 of RV “Polarstern” in 1997: 53–59. Berichte zur Polarforschung225, Bremerhaven (Alfred Wegener Institute for Polar and Marine Research).Google Scholar
  292. Okolodkov, Y.B. 1998. A checklist of dinoflagellates recorded from the Russian Arctic Seas. — Sarsia83: 267–292.Google Scholar
  293. Okolodkov, Y.B. 1999a. Species range types of Recent marine dinoflagellates recorded from the Arctic. — Grana38: 162–169.Google Scholar
  294. Okolodkov, Y.B. 1999b. An ice-bound planktonic dinoflagellatePeridiniella catenata (Levander) Balech: Morphology, ecology and distribution. — Botanica Marina42: 333–341.Google Scholar
  295. Okolodkov, Y.B. 2000. Dinoflagellates (Dinophyceae) of the Eurasian Arctic seas. — 363 p., St. Petersburg (Komarov Botanical Institute, Russian Academy of Sciences).Google Scholar
  296. Okolodkov, Y.B. 2005. The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. — Harmful Algae4: 351–369.Google Scholar
  297. Okolodkov, Y.B. &Dodge, J.D. 1996. Biodiversity and biogeography of planktonic dinoflagellates in the Arctic Ocean. — Journal of Experimental Marine Biology and Ecology202: 19–27.Google Scholar
  298. Okolodkov, Y.B.;Hapter, R. &Semovski, S.V. 2000. Phytoplankton in Kongsfjorden, Spitsbergen, July 1996. — Sarsia85: 345–352.Google Scholar
  299. Olli, K. &Anderson, D.M. 2002. High encystment success of the dinoflagellateScrippsiella cf.lachrymosa in culture experiments. — Journal of Phycology38: 145–156.Google Scholar
  300. Ortmann, A.E. 1896. Grundzüge der marinen Tiergeographie. Anleitung zur Untersuchung der geographischen Verbreitung mariner Tiere, mit besonderer Berücksichtigung der Dekapodenkrebse. — 96 p., Jena (G. Fischer).Google Scholar
  301. Owrid, G.;Socal, G.;Civitarese, G.;Lucheta, A.;Wiktor, J.;Nöthig, E.-M.;Andreassen, I. &Schauer, U. 2000. Spatial variability of phytoplankton, nutrients and new production estimates in the waters around Svalbard. — Polar Research19: 155–171.Google Scholar
  302. Paasche, E. 1960. Phytoplankton distribution in the Norwegian Sea in June, 1954, related to hydrography and compared with primary production data. — Fiskeridirektoratets Skrifter, Serie Havundersøkelser12: 1–77.Google Scholar
  303. Paasche, E. &Rom, A.-M. 1961. On the phytoplankton vegetation of the Norwegian Sea in May 1958. — Nytt Magasin for Botanikk9: 33–60.Google Scholar
  304. Paetsch, H.;Botz, R.;Scholten, J.C. &Stoffers, P. 1992. Accumulation rates of surface sediments in the Norwegian-Greenland Sea. — Marine Geology104: 19–30.Google Scholar
  305. Pankow, H. 1990. Ostsee-Algenflora. — 648 p., Jena (G. Fischer).Google Scholar
  306. Parker, G.M. 1984. Dispersal of zooxanthellae on coral reefs by predators on cnidarians. — Biological Bulletin167: 159–167.Google Scholar
  307. Parkinson, C.L. 2000. Variability of Arctic sea ice: the view from space, an 18-year record. — Arctic53: 341–358.Google Scholar
  308. Parkinson, CL.;Cavalieri, D.J.;Gloersen, P.;Zwally, H.L. &Comiso, J.C. 1999. Arctic sea ice extents, areas, and trends, 1978–1996. — Journal of Geophysical Research104: 20,837–20,856.Google Scholar
  309. Paulsen, O. 1908. Peridiniales. — In:Brandt, K. &Apstein, C, eds., Nordisches Plankton, Botanischer Teil: 1–124, Kiel (Lipsius und Tischer).Google Scholar
  310. Peinert, R.;Antia, A.;Bauerfeind, E.;Haupt, O.;Krumbholz, M.;Peeken, I.;Bodungen, B. von;Ramseier, R.;Voss, M. &Zeitschel, B. 2001. Particle flux variability in the polar and Atlantic biogeochemical provinces of the GIN Seas. — In:Schäfer, P.;Ritzrau, W.;Schlüter, M. &Thiede, J., eds., The northern North Atlantic: A changing environment: 53–68, Berlin (Springer).Google Scholar
  311. Peinert, R.;Bathmann, U.;von Bodungen, B. &Noji, T. 1987. The impact of grazing on spring phytoplankton growth and sedimentation in the norwegian current. — Mitteilungen des Geologisch-Paläontologischen Institutes der Universität Hamburg62: 149–164.Google Scholar
  312. Persson, A. 2000. Possible predation of cysts — a gap in the knowledge of dinoflagellate ecology? — Journal of Plankton Research22: 803–809.Google Scholar
  313. Persson, A. &Rosenberg, R. 2003. Impact of grazing and bioturbation of marine benthic deposit feeders on dinoflagellate cysts. — Harmful Algae2: 43–50.Google Scholar
  314. Persson, A.;Godhe, A. &Karlson, B. 2000. Dinoflagellate cysts in Recent sediments from the west coast of Sweden. — Botanica Marina43: 69–79.Google Scholar
  315. Perez, C.C.;Roy, S.;Levasseur, M. &Anderson, D.M. 1998. Control of germination ofAlexandrium tamarense (Dinophyceae) cysts from the lower St. Lawrence Estuary (Canada). — Journal of Phycology34: 242–249.Google Scholar
  316. Peterson, B.J.;Holmes, R.M.;McClelland, J.W.;Vörösmarty, C.J.;Lammers, R.B.;Shiklomanov, A.I.;Shiklomanov, I.A. &Rahmstorf, S. 2002. Increasing river discharge to the Arctic Ocean. — Science298: 2171–2173.Google Scholar
  317. Pfiester, L.A. 1977. Sexual reproduction ofPeridinium gatunense (Dinophyceae). — Journal of Phycology13: 92–95.Google Scholar
  318. Pfiester, L.A. &Anderson, D.M. 1987. Dinoflagellate reproduction. — In:Taylor, F.J.R., ed., The biology of dinoflagellates: 611–648, Oxford (Blackwell Scientific Publications).Google Scholar
  319. Pospelova, V. &Head, M.J. 2002.Islandinium brevispinosum sp. nov. (Dinoflagellata), a new organic-walled dinoflagellate cyst from modern estuarine sediments of New England (USA). — Journal of Phycology38 (3): 593–601.Google Scholar
  320. Pross, J.;Kotthoff, U. &Zonnevelld, K.A.F. 2004. Die Anwendung organischwandiger Dinoflagellatenzyten zur Rekonstruktion von Paläoumwelt, Paläoklima und Paläozeanographie: Möglichkeiten und Grenzen. — Paläontologische Zeitschrift78: 5–39.Google Scholar
  321. Quillfeldt, C.H. von;Ambrose, W.G. &Clough, L.M. 2003. High number of diatom species in first-year ice from the Chukchi Sea. — Polar Biology26: 806–818.Google Scholar
  322. Radi, T. &de Vernal, A. 2004. Dinocyst distribution in surface sediments from the northeastern Pacific margin (40–60°N) in relation to hydrographic conditions, productivity and upwelling. — Rewiev of Paleobotany and Palynology128: 163–193.Google Scholar
  323. Radi, T.;Vernal, A. de &Peyron, O. 2001. Relationships between dinoflagellate cyst assemblages in surface sediment and hydro-graphic conditions in the Bering and Chukchi seas. — Journal of Quaternary Science16: 667–680.Google Scholar
  324. Ramseier, R.P.;Garrity, C;Bauerfeind, E. &Peinert, R. 1999. Sea ice impact on long-term particle flux in the Greenland Sea’s Is Odden-Nordbukta region, 1985—1996. — Journal of Geophysical Research104: 5329–5343.Google Scholar
  325. Ramsfjell, E. 1960. Phytoplankton distribution in the Norwegian Sea in June, 1952 and 1953. — Fiskeridirektoratets Skrifter, Serie Havundersøkelser12: 1–39.Google Scholar
  326. Reid, P.C. 1974. Gonyaulacacean dinoflagellate cysts from the British Isles. — Nova Hedwigia25: 579–637.Google Scholar
  327. Reid, P.C. 1977. Peridiniacean and Glenodiniacean dinoflagellate cysts from the British Isles. — Nova Hedwigia29: 429–463.Google Scholar
  328. Reid, P.C. 1978. Dinoflagellate cysts in the plankton. — New Phytologist80: 219–229.Google Scholar
  329. Reid, P.C. &Boalch, G.T. 1987. A new method for identification of dinoflagellate cysts. — Journal of Plankton Reserach9: 249–253.Google Scholar
  330. Reid, P.C. &Harland, R. 1977. Studies of Quaternary dinoflagellate cysts from the North Atlantic. — American Association of Stratigraphic Palynologists Contribution Series5A: 147–169.Google Scholar
  331. Reimnitz, E.;McCormick, K.;McDougall, K. &Brouwers, E. 1993. Sediment export by ice rafting from a coastal polynya, Arctic Alaska, U.S.A. — Arctic and Alpine Research25: 83–98.Google Scholar
  332. Rengefors, K. 1998. Seasonal sucession of dinoflagellates coupled to the benthic cyst dynamics in Lake Erken, Sweden. — Archiv für Hydrobiologie, Special Issue Advances in Limnology51: 123–141.Google Scholar
  333. Rengefors, K. &Meyer, B. 1998.Peridinium euryceps sp. nov. (Peridiniales, Dinophyceae), a cryophilic dinoflagellate from Lake Erken. — Phycologia37: 284–291.Google Scholar
  334. Rey, F.F. &Loeng, H. 1985. The influence of ice and hydrographic conditions on the development of stress on marine organisms. — In:Gray, J.S. &Christiansen, M.E., eds., Marine biology of polar regions and effect of stress on marine organisms: 49–63, Chichester (John Wiley & Sons).Google Scholar
  335. Riding, J.B. &Kyffin-Hughes, J.E. 2004. A review of the laboratory preparation of palynomorphs with a description of an effective non-acid technique. — Revista Brasileira de Paleontologia7: 13–44.Google Scholar
  336. Rochon, A.;de Vernal, A.;Turon, J.-L.;Matthiessen, J. &Head, M.J. 1999. Distribution of dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent basins in relation to sea-surface parameters. — American Association of Stratigraphic Palynologists Contribution Series35: 146.Google Scholar
  337. Rochon, A.;Mudie, P.J.;Aksu, A.E. &Gillespie, H. 2002.Pterocysta gen. nov.: a new dinoflagellate cyst from Pleistocene glacial-stage sediments of the Black and Marmara seas. — Palynology26: 95–105.Google Scholar
  338. Rothrock, D.A.;Yu, Y. &Maykut, G.A. 1999. Thinning of the Arctic sea-ice cover. — Geophysical Research Letters26: 3469–3472.Google Scholar
  339. Rudels, B.;Jones, E.P.;Anderson, L.G. &Kattner, G. 1994. On the intermediate depth waters of the Arctic Ocean. — In:Johannessen, O.M.;Muench, R.D. &Overland, J.E., eds., The Polar Oceans and their role in shaping the global environment: 33–46, Washington, DC (American Geophysical Union).Google Scholar
  340. Rysgaard, S.;Nielsen, T.G. &Hansen, B.W. 1999. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. — Marine Ecology Progress Series179: 13–25.Google Scholar
  341. Sakshaug, E. 1972. Phytoplankton investigations in Trondheimsfjord, 1963–1966. — Det Kongelige Norske Videnskabers Selskab Skrifter1: 1–56.Google Scholar
  342. Sakshaug, E. 2003. Primary and secondary production in the arctic seas. — In:Stein, R. &Macdonald, R.W., eds., The organic carbon cycle in the Arctic Ocean: 57–81, Berlin (Springer).Google Scholar
  343. Sakshaug, E. &Holm-Hansen, O. 1984. Factors governing pelagic production in Polar Oceans. — In:Holm-Hansen, O.;Bolis, L. &Gilles, R., eds., Marine phytoplankton and productivity: 1–18, Berlin (Springer).Google Scholar
  344. Sakshaug, E. &Myklestad, S. 1973. Studies on the phytoplankton ecology of the Trondheimsfjord. III. Dynamics of phytoplankton blooms in relation to enviromental factors, bioassay experiments and parameters for the physiological state of the populations. — Journal of Experimental Marine Biology and Ecology11: 157–188.Google Scholar
  345. Sakshaug, E. &Slagstad, D. 1991. Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. — In:Sakshaug, E.;Hopkins, C.C.E. &Øritsland, N.A., eds., Proceedings of the Pro Mare Symposium on polar marine ecology: 69–85, Trondheim (Polar Research).Google Scholar
  346. Sakshaug, E.;Hopkins, C.C.E. &Øritsland, N.A. 1991. Proceedings of the Pro Mare Symposium on polar marine ecology. Trondheim, Norway, 12–16 May 1990. — 662 p., Polar Resarch10 (Norsk Polarinstitut Oslo).Google Scholar
  347. Samtleben, C;Schäfer, P.;Andruleit, H.;Baumann, A.;Baumann, K.-H.;Kohly, A.;Matthiessen, J. &Schröder-Ritzrau, A. 1995. Plankton in the northern North Atlantic: from living communities to sediment assemblages — an actualistic approach. — Geologische Rundschau84: 108–136.Google Scholar
  348. Schei, B. 1974. Phytoplankton investigations in Skjomen, a fjord in North Norway, 1970–1971. — Astarte7: 43–59.Google Scholar
  349. Schiller, J. 1933. Dinoflagellatae (Peridineae) in monographischer Behandlung. — In:Rabenhorst, L., ed., Kryptogamen-Flora von Deutschland, Österreich und der Schweiz: 1–617, Leipzig (Akademischer Verlag).Google Scholar
  350. Schiller, J. 1937. Dinoflagellatae (Peridineae) in monographischer Behandlung. — In:Rabenhorst, L., ed., Kryptogamen-Flora von Deutschland, Österreich und der Schweiz: 1–589, Leipzig (Akademischer Verlag).Google Scholar
  351. Schnepf, E. &Elbrächter, M. 1992. Nutritional strategies in dinoflagellates. A review with emphasis on cell biological aspects. — European Journal of Protistology28: 3–24.Google Scholar
  352. Schnepf, E. &Elbrächter, M. 1999. Dinophyte chloroplasts and phylogeny — a review. — Grana38: 81–97.Google Scholar
  353. Schölten, J.C.;Fietzke, J.;Vogler, S.;Loeff, M.M.R. v.d.;Mangini, A.;Koeve, W.;Waniek, J.;Stoffers, P.;Antia, A. &Kuss, J. 2001. Trapping efficiencies of sediment traps from the deep Eastern North Atlantic: the230Th calibration. — Deep-Sea Research Part II48: 2383–2408.Google Scholar
  354. Schröder-Ritzrau, A.;Jensen, S.;Matthiessen, J.;Samtleben, C;Schäfer, P.;Andruleit, H.;Hass, C;Kohly, A. &Thiede, J. 2001. Distribution, export and alteration of plankton organisms in the water column of the Nordic Seas. — In:Schäfer, P.;Ritzrau, W.;Schlüter, M. &Thiede, J., eds., The northern North Atlantic. A changing environment: 81–104, Berlin (Springer).Google Scholar
  355. Semina, H.J. 1997. An outline of the geographical distribution of oceanic phytoplankton. — In:Blaxter, G.H.S.;Southward, A.G.;Gebruk, A.V.;Southward, E.C. &Tyler, P.A., eds., Advances in Marine Biology32: 527–563, San Diego (Academic Press).Google Scholar
  356. Semina, H.J.;Belyayeva, T.V.;Zernova, V.V.;Movchan, O.A.;Sanina, L.V.;Sukhanova, I.N. &Tarkhova, I.A. 1977. Distribution of indicator species of planktonic algae in the World Ocean. — Oceanology USSR Academy of Sciences17: 867–877 (English translation: 573–579).Google Scholar
  357. Serreze, M.C.;Walsh, J.E.; III,Chapin, F.S.;Osterkamp, T.;Dyurgerov, M.;Romanovsky, V.;Oechel, W.C.;Morison, J.;Zhang, T. &Barry, R.G. 2000. Observational evidence of recent change in the northern high-latitude environment. — Climatic Change46: 159–207.Google Scholar
  358. Sherr, E.B. &Sherr, B.F. 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. — Microbial Ecology28: 223–235.Google Scholar
  359. Sherr, E.B.;Sherr, B.F. &Fessenden, L. 1997. Heterotrophic protists in the Central Arctic Ocean. — Deep-Sea Research II44: 1665–1682.Google Scholar
  360. Schnepf, E. &Elbrächter, M. 1992. Nutritional strategies in dinoflagellates. A review with emphasis on cell biological aspects. — European Journal of Protistology28: 3–24.Google Scholar
  361. Smayda, T.J. 1958. Phytoplankton studies around Jan Mayen Island March–April, 1955. — Nytt Magasin for Botanikk6: 75–96.Google Scholar
  362. Smayda, T.J. 1980. Phytoplankton species succession. — In:Morris, I., ed., The physiological ecology of phytoplankton: 493–570, Berkeley (University of California Press).Google Scholar
  363. Smayda, T.J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. — Limnology and Oceangraphy42: 1137–1153.Google Scholar
  364. Smayda, T.J. 2000. Ecological features of harmful algae bloooms in coastal upwelling systems. — South African Journal of Marine Sciences22: 219–253.Google Scholar
  365. Smayda, T.J. 2002. Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. — Harmful Algae1: 95–112.Google Scholar
  366. Smayda, T.J. &Reynolds, C.S. 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. — Journal of Plankton Research23: 447–461.Google Scholar
  367. Smetacek, V. 1981. The annual cycle of protozooplankton in the Kiel Bight. — Marine Biology63: 1–11.Google Scholar
  368. Smith, W.O. jr. &SAKSHAUG, E. 1990. Polar phytoplankton. — In:Smith, W.O., ed., Polar oceanography, Part B: Chemistry, biology, and geology: 477–525, San Diego (Academic Press).Google Scholar
  369. Smith, W.O. jr.;Baumann, M.E.M.;Wilson, D.L. &Aletsee, L. 1987. Phytoplankton biomass and productivity in the marginal ice zone of the Fram Strait during summer 1984. — Journal of Geophysical Research92: 6777–6786.Google Scholar
  370. Smith, W.O. jr.;Brightman, R.I. &Booth, B.C. 1991. Phytoplankton biomass and photosynthetic response during the winter- spring transition in the Fram Strait. — Journal of Geophysical Research96: 4549–4554.Google Scholar
  371. Sogin, M.L. 1989. Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. — American Zoology29: 472–485.Google Scholar
  372. Sournia, A. 1978. Phytoplankton manual. — 337 p., Paris (United Nations Educational, Scientific and Cultural Organization).Google Scholar
  373. Sournia, A. 1982. Form and function in marine phytoplankton. — Biological Revue57: 347–394.Google Scholar
  374. Spies, A. 1987. Phytoplankton in the marginal ice zone of the Greenland Sea during summer, 1984. — Polar Biology7: 195–205.Google Scholar
  375. Spindler, M. 1990. A comparison of Arctic and Antarctic sea ice and the effects of different properties on sea ice biota. — In:Bleil, U. &Thiede, J., eds., Geological history of the polar oceans: Arctic versus Antarctic: 173–186, Dordrecht (Kluwer Academic Publishers).Google Scholar
  376. Spindler, M. 1994. Notes on the biology of sea ice in the Arctic and Antarctic. — Polar Biology14: 319–324.Google Scholar
  377. Steidinger, K.A. &Tangen, K. 1996. Dinoflagellates. — In:Tomas, CR., ed., Identifying marine diatoms and dinoflagellates: 387–584, San Diego (Academic Press).Google Scholar
  378. Stein, R.;Fahl, K.;Fütterer, D.K.;Galimov, E.M. &Stepanets, O. 2003. Siberian river run-off in the Kara Sea: characterization, quantification, variability, and environmental significance. — 488 p., Proceedings in Marine Science6, Amsterdam (Elsevier).Google Scholar
  379. Stoecker, D.K. &McDowell Capuzzo, J.M. 1990. Predation on Protozoa: its importance to Zooplankton. — Journal of Plankton Research12: 891–908.Google Scholar
  380. Stoecker, D.K.;Buck, K.R. &Putt, M. 1992. Changes in the sea-ice brine community during the spring-summer transition, Mc Murdo Sound, Antarctica. I. Photosynthetic protists. — Marine Ecology Progress Series84: 265–278.Google Scholar
  381. Stoecker, D.K.;Buck, K.R. &Putt, M. 1993. Changes in the sea-ice brine community during the spring-summer transition, Mc Murdo Sound, Antarctica. II. Phagotrophic protists. — Marine Ecology Progress Series95: 103–113.Google Scholar
  382. Stoecker, D.K.;Gustafson, D.E.;Baier, C.T. &Black, M.M.D. 2000. Primary production in the upper sea ice. — Aquatic Microbial Ecology21: 275–287.Google Scholar
  383. Stoecker, D.K.;Gustafson, D.E.;Black, M.M.D. &Baier, C.T. 1998. Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. — Journal of Phycology34: 60–69.Google Scholar
  384. Stoecker, D.K.;Gustafson, D.E.;Merrell, J.R.;Black, M.M.D. &Baier, C.T. 1997. Excystment and growth of chrysophytes and dinoflagellates at low temperatures and high salinites in Antarctic sea-ice. — Journal of Phycology33: 585–595.Google Scholar
  385. Stover, L.E. &Evitt, W.R. 1978. Analysis of pre-Pleistocene organic walled dinoflagellates. — 300 p., Stanford (Stanford University Publication).Google Scholar
  386. Stover, L.E. &Williams, G.L. 1987. Analysis of Mesozoic and Cenozoic organic-walled dinoflagellates. — American Association of Stratigraphie Palynologists Contribution Series18: 1–300.Google Scholar
  387. Stover, L.E.;Brinkhuis, H.;Damassa, SP.;Verteil, L. de;Helby, R.J.;Moteil, E.;Partridge, A.D.;Powell, A.J.;Riding, J.B.;Smelror, M. &Williams, G.L. 1996. Mesozoic-Tertiary dinoflagellates, acritarchs and prasinophytes. — In:Jansonius, J. &McGregor, D.C., eds., Palynology: Principles and application: 641–750, Dallas (American Associaton of Stratigraphie Palynologists).Google Scholar
  388. Sullivan, J.M. &Swift, E. 2003. Effects of small-scale turbulence on net growth rate and size of ten species of marine dinoflagellates. — Journal of Phycology39: 83–94.Google Scholar
  389. Sullivan, J.M.;Swift, E.;Donaghay, P.L. &Rines, J.E.B. 2003. Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. — Harmful Algae2: 183–199.Google Scholar
  390. Tamelander, T. &Heiskanen, A.-S. 2004. Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. — Journal of Marine Systems52: 217–234.Google Scholar
  391. Tangen, K.;Brand, L.E.;Blackwelder, P.L. &Guillard, R.R.L. 1982.Thoracosphaera heimii (Lohmann) Kamptner is a dinophyte: observations on its morphology and life cycle. — Marine Micropaleontology7: 193–212.Google Scholar
  392. Tappan, H. N. 1980. The paleobiology of plant protists. — 1028 p., San Francisco (W.H. Freeman and Company).Google Scholar
  393. Taylor, A.H.;Harbour, D.S.;Harris, R.P.;Burkill, P.H. &Edwards, E.S. 1993. Seasonal sucession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen. — Journal of Plankton Research15: 875–891.Google Scholar
  394. Taylor, F.J.R. 1976. Flagellate phylogeny: a study in conflicts. — Journal of Protozoology23: 28–40.Google Scholar
  395. Taylor, F.J.R. 1980. On dinoflagellate evolution. — BioSystems13: 65–108.Google Scholar
  396. Taylor, F.J.R. 1987a. The biology of dinoflagellates. — 785 p., Oxford (Blackwell Scientific Publications).Google Scholar
  397. Taylor, F.J.R. 1987b. General group characteristics; special features of interest; short history of dinoflagellate study. — In:Taylor, F.J.R., ed., The biology of dinoflagellates: 1–23, Oxford (Blackwell Scientific Publications).Google Scholar
  398. Taylor, F.J.R. 1987c. Dinoflagellate morphology. — In:Taylor, F.J.R., ed., The biology of dinoflagellates: 24–91. Oxford (Blackwell Scientific Publications).Google Scholar
  399. Taylor, F.J.R. &Pollingher, U. 1987. Ecology of dinoflagellates. — In:Taylor, F.J.R., ed., The biology of dinoflagellates: 399–529, Oxford (Blackwell Scientific Publications).Google Scholar
  400. Throndsen, J.;Hasle, G.R. &Tangen, K. 2003. Norsk Kystplankton Flora. — 341 p., Oslo (Almater Forlag AS).Google Scholar
  401. Turner, J.T. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. — Aquatic Microbial Ecology27: 57–102.Google Scholar
  402. Turner, J.T. &Tester, P.A. 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. — Limnology and Oceanography42: 1203–1214.Google Scholar
  403. Tuschling, K.;Juterzenka, K. Von;Okolodkov, Y.B. &Anoshkin, A. 2000. Composition and distribution of the pelagic and sympagic algal assemblages in the Laptev Sea during autumnal freeze-up. — Journal of Plankton Research22: 843–864.Google Scholar
  404. Tyler, M.A.;Coats, D.W. &Anderson, D.M. 1982. Encystment in a dynamic environment: Deposition of dinoflagellate cysts by a frontal convergence. — Marine Ecology Progress Series7: 163–178.Google Scholar
  405. Tyson, R.V. 1995. Sedimentary organic matter. — 615 p., Dordrecht (Kluwer Academic Publishers).Google Scholar
  406. Verity, P.G.;Stoecker, D.K.;Sieracki, M.E.;Burkill, P.H.;Edwards, E.S. &Tronzo, CR. 1993. Abundance, biomass and distribution of heterotrophic dinoflagellates during the North Atlantic spring bloom. — Deep-Sea Research II40: 227–244.Google Scholar
  407. Verity, P.G.;Wassmann, P.;Ratkova, T.N.;Andreassen, I. &Nordby, E. 1999. Seasonal patterns in composition and biomass of autotrophic and heterotrophic nano-and microplankton communities on the north Norwegian Shelf. — Sarsia84: 265–277.Google Scholar
  408. Wall, D. 1965. Modern hystrichospheres and dinoflagellate cysts from the Woods Hole region. — Grana Palynologica6: 297–314.Google Scholar
  409. Wall, D. 1971. The lateral and vertical distribution of dinoflagellates in Quaternary sediments. — In:Funell, B.M. &Riedel, W.R., eds., Micropaleontology of oceans: 399–405, Cambridge (Cambridge University Press).Google Scholar
  410. Wall, D. &Dale, B. 1966. “Living fossils” in western Atlantic plankton. — Nature211: 1025–1026.Google Scholar
  411. Wall, D. &Dale, B. 1967. The resting cysts of modern marine dinoflagellates and their palaeontological significance. — Review of Palaeobotany and Palynology2: 349–354.Google Scholar
  412. Wall, D. &Dale, B. 1968. Modern dinoflagellate cysts and evolution of the Peridiniales. — Micropaleontology14: 265–304.Google Scholar
  413. Wall, D. &Dale, B. 1974. Dinoflagellates in Late Quaternary deep-water sediments of Black Sea. — In:Degens, E.T. &Ross, D.A., eds., The Black Sea — Geology, chemistry and biology: 364–380, Tulsa (American Association of Petroleum Geologists).Google Scholar
  414. Wall, D.;Dale, B. &Harada, K. 1973. Descriptions of new fossil dinoflagellates from the Late Quaternary of the Black Sea. — Micropaleontology19: 18–31.Google Scholar
  415. Wall, D.;Dale, B.;Lohmann, G.P. &Smith, W.K. 1977. The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and adjacent seas. — Marine Micropaleontology2: 121–200.Google Scholar
  416. Wall, D.;Guillard, R.R.L. &Dale, B. 1967. Marine dinoflagellate cultures from resting spores. — Phycologia6: 83–86.Google Scholar
  417. Wassmann, P.;Peinert, R. &Smetacek, V. 1991. Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. — In:Sakshaug, E.;Hopkins, C.C.E. &Oritsland, N.A., eds., Proceedings of the Pro Mare Symposium on Polar Marine Ecology: 209–228,Trondheim, Polar Research 10 (Norsk Polarinstitut Oslo).Google Scholar
  418. Wassmann, P.;Ratkova, T.;Andreasen, I.;Vernet, M.;Peder-Sen, G. &Rey, F. 1999. Spring bloom development in the marginal ice zone and the Central Barents Sea. — Marine Ecology20: 321–346.Google Scholar
  419. Weslawski, J.M.;Koszteyn, J.;Zajaczkowski, M.;Wiktor, J. &Kwasniewski, S. 1995. Freshwater in Svalbard fiord ecosystems. — In:Skjoldal, H.R.;Hopkins, C;Erikstad, K.E. &Leinaas, H.P., eds., Ecology of fjords and coastal water: 229–241, Amsterdam (Elsevier).Google Scholar
  420. Weslawski, J.M.;Kwasniewski, S. &Wiktor, J. 1991. Winter in a Svalbard fiord ecosystem. — Arctic44: 115–123.Google Scholar
  421. Weslawski, J.M.;Kwasniewski, S. &Wiktor, J. 1993. Observations on the fast ice biota in the fjords of Spitsbergen. — Polish Polar Research14: 331–343.Google Scholar
  422. Wiktor, J. 1999. Early spring microplankton development under fast ice covered fjords of Svalbard, Arctic. — Oceanologia41: 51–72.Google Scholar
  423. Wiktor, J. &Okolodkov, Y.B. 1995. Phytoplankton. — In:Klekowski, R.Z. &Weslawski, J.M., eds., Atlas of the marine flora of southern Spitsbergen: 1–295, Gdansk (Ossolineum).Google Scholar
  424. Wiktor, J.;Weslawski, J.M.;Wieczorek, P.;Zajaczkowski, M. &Okolodkov, Y.B. 1998. Phytoplankton and suspensions in relation to the freshwater in Arctic caostal marine ecosystems. — Polish Polar Research19: 219–234.Google Scholar
  425. Williams, D.B. 1971. The occurrence of dinoflagellates in marine sediments. — In:Funnell, B.M. &Riedel, W.R., eds., Micropalaeontology of the oceans: 231–243, London (Cambridge University Press).Google Scholar
  426. Williams, G.L.;Fensome, R.A.;Miller, M.A. &Sarjeant, W.A.S. 2000. A glossary of the terminology applied to dinoflagellates, acritarchs and prasinophytes, with emphasis on fossils, third edition. — American Association of Stratigraphie Palynologists Contribution Series37: 1–370.Google Scholar
  427. Williams, G.L.;Lentin, J.K. &Fensome, R.A. 1998. The Lentin and Williams Index of fossil dinoflagellates 1998 edition. — American Association of Stratigraphie Palynologists Contribution Series34: 817.Google Scholar
  428. Williams, G.L.;Sarjeant, W.A.S. &Kidson, E.J. 1978. A glossary of the terminology applied to dinoflagellate amphiesmae and cysts and acritarchs. — American Association of Stratigraphie Palynologists Contribution Series2A: 1–122.Google Scholar
  429. Withers, N. 1987. Dinoflagellate sterols. — In:Taylor, F.J.R., ed., The biology of dinoflagellates: 316–359, Oxford (Blackwell Scientific Publishers).Google Scholar
  430. Wood, G.D.;Gabriel, A.M. &Lawson, J.C. 1996. Palynological techniques-processing and microscopy. — In:Jansonius, J. &McGregor, D.C., eds., Palynology: Principles and applications: 29–50, Dallas (American Association of Stratigraphie Palynologists).Google Scholar
  431. Woodgate, R.A. &Fahrbach, E. 1999. Benthic storms in the Greenland Sea. — Deep-Sea Research146: 2109–2127.Google Scholar
  432. Yoon, H.s.;Hackett, J.D. &Bhattacharya, D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. — Proceedings of the National Academy of Sciences USA99: 11724–11729.Google Scholar
  433. Zielinski, U. &Gersonde, R. 1997. Diatom distribution in Southern ocean surface sediments (Atlantic sector): Implications for paleoenvironmental reconstructions. — Palaeogeography, Palaeoclimatology, Palaeoecology129: 213–250.Google Scholar
  434. Zonneveld, K.A.F. 1997. New species of organic walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean). — Review of Palaeobotany and Palynology97: 319–337.Google Scholar
  435. Zonneveld, K.A.F. &Brummer, G.J.A. 2000. (Palaeo-)ecological significance, transport and preservation of organic-walled dinoflagellate cysts in the Somali Basin, NW Arabian Sea. — Deep-Sea Research II47: 2229–2256.Google Scholar
  436. Zonneveld, K.A.F. &Dale, B. 1994. The cyst-motile stage relationships ofProtoperidinium monospinum (Paulsen) Zonneveld et Dale comb. nov. andGonyaulax verior (Dinophyta, Dinophyceae) from the Oslo Fjord (Norway). — Phycologia33: 359–368.Google Scholar
  437. Zonneveld, K.A.F.;Höll, C;Janofske, D.;Karwath, B.;Kerntopf, B.;Ruhlemann, C. &Willems, H. 1999. Calacareous dinoflagellate cysts as paleo-environmental tools. — In:Fischer, G. &Wefer, G.,eds., Use of proxies in paleoceanography: 145–164, Berlin (Springer).Google Scholar
  438. Zonneveld, K.A.F.;Versteegh, G.J.M. &de Lange, G.J. 1997. Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10,000 year natural experiment. — Marine Micropaleontology29: 393–405.Google Scholar
  439. Zonneveld, K.A.F.;Versteegh, G.J.M. &Lange, G.J.D. 2001. Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean SI sapropel. — Marine Geology172: 181–195Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2005

Authors and Affiliations

  • Jens Matthiessen
    • 1
  • Anne de Vernal
    • 2
  • Martin Head
    • 3
  • Yuri Okolodkov
    • 4
  • Karin Zonneveld
    • 5
  • Rex Harland
    • 6
    • 7
  1. 1.Alfred Wegener Institute for Polar and Marine Research, ColumbusstrasseBremerhavenGermany
  2. 2.GEOTOP, Université du Québec à MontréalMontréalCanada
  3. 3.Godwin Institute for Quaternary Research, Department of GeographyUniversity of CambridgeCambridgeUnited Kingdom
  4. 4.Institute de RecursosUniversidad del Mar, Ciudad Universitaria, Puerto AngelOaxacaMexico
  5. 5.Fachbereich 5-GeowissenschaftenUniversität BremenBremenGermany
  6. 6.DinoData ServicesBinghamUnited Kingdom
  7. 7.Centre for PalynologyUniversity of SheffieldBrook HillUnited Kingdom

Personalised recommendations