Asymptotic behaviour and oscillations of solutions of nonlinear parabolic differential — functional equations

  • Emil Minchev
  • Norio Yoshida


The asymptotic behaviour of the solutions of initial-boundary value problem for a class of nonlinear parabolic differential — functional equations is studied via the method of differential inequalities in order to obtain oscillation criterion for the solutions.

AMS Mathematics Subject Classification

35R10 35B05 

Key words and phrases

asymptotic behaviour stationary solution oscillation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Kobayashi and N. Yoshida,Oscillations of solutions of initial value problems for parabolic equations, Math. Journ. Toyama Univ.,23 (2000), 149–155.MATHMathSciNetGoogle Scholar
  2. 2.
    T. Kusano and N. Yoshida,Oscillation criteria for a class of functional parabolic equations, Journ. Appl. Anal.,5 (1999), 1–16.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Lakshmikantham and S. Leela,Differential and Integral Inequalities, Theory and Applications, Vols. 1 and 2, Academic Press, New York, 1969.MATHCrossRefGoogle Scholar
  4. 4.
    W. N. Li and B. T. Cui,Oscillation of solutions of neutral partial functional-differential equations, Journ. Math. Anal. Appl.,234 (1999), 123–146.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Szarski,Differential Inequalities, Polish Scientific Publishers, Warsaw, 1965.MATHGoogle Scholar
  6. 6.
    H. Uesaka,Oscillation of solutions of nonlinear wave equations, Proc. Japan Acad. Ser.A Math. Sci.,72 (1996), 148–151.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    W. Walter,Differential, and Integral Inequalities, Springer-Verlag, New York — Berlin, 1970.MATHGoogle Scholar
  8. 8.
    P. Wang and Ch. Feng,Oscillation of parabolic equations of neutral type, Journ. Comp. Appl. Math.,126 (2000), 111–120.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    N. Yoshida,Forced oscillations of a class of parabolic equations with functional arguments, Math. Journ. Toyama Univ.,22 (1999), 187–204.MATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2002

Authors and Affiliations

  • Emil Minchev
    • 1
  • Norio Yoshida
    • 2
  1. 1.Department of Mathematics, Faculty of EducationChiba UniversityChibaJapan
  2. 2.Department of Mathematics, Faculty of ScienceToyama UniversityToyamaJapan

Personalised recommendations