Advertisement

Canadian Journal of Anaesthesia

, Volume 48, Issue 1, pp 85–87 | Cite as

Increase of peak expiratory flow by atropine is dependent on circadian rhythm

  • Setsuo Furuta
  • Seichi Tanigawa
  • Hiroshi Ohmizo
  • Hiroshi Iwama
Cardiothoracic Anesthesia, Respiration And Airway
  • 144 Downloads

Abstract

Purpose: To examine whether the bronchodilatory effect of atropine differs in the evening from the morning.

Methods: Thirteen adult healthy volunteers with no oral medication intake were studied. At 1600, peak expiratory flow (PEF) was measured three times, and the highest value recorded. Subsequently, the volunteer received 0.01 mg·kg−1 atropineim, and the PEF was measured every 30 min for 180 min. On a different day, at 0400, the effect of atropine on the PEF was measured again in the same way.

Results: The PEF values before atropine at 1600 and 0400 were 485±92 (350–730) and 458±76 (340–600) l min−1, (P<0.05). There was no difference in PEF values between the 1600 and 0400 time courses after atropine. The PEF value was increased only at 90 min at 1600 (P=0.0012), but at 30, 60, 90 and 120 min at 0400 (P=0.0001).

Conclusion: Atropine administration has a weak bronchodilatory effect in the evening, but a stronger effect in the morning. Airways are narrower in the morning than in the evening, and this change is inhibited by atropine such that the PEF values are restored to those observed in the evening.

Keywords

Chronic Obstructive Pulmonary Disease Circadian Rhythm Atropine Chronic Obstructive Pulmonary Disease Patient Peak Expiratory Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Objectif: Vérifier si l’effet broncho-dilatateur de l’atropine est différent le matin et le soir.

Méthode: Treize volontaires adultes en bonne santé, qui ne prenaient pas de médicament par voie orale, ont participé à l’étude. À 16 h, le débit expiratoire de pointe (DEP) a été mesuré trois fois et la valeur maximale, notée. Par la suite, les volontaires ont reçu 0,01 mg·kg−1 d’atropineim et le DEP a été mesuré toutes les 30 min pendant 180 min. Un autre jour, l’effet de l’atropine sur le DEP a encore été mesuré de la même manière à 4 h cette fois.

Résultats: Les valeurs du DEP avant l’administration d’atropine à 16 h et à 4 h ont été de 485±92 (350–730) et de 458±76 (340–600) l min−1, (P<0,05). Après l’administration de l’atropine, il n’y avait pas de différence dans l’évolution temporelle des valeurs de DEP pour les groupes de 16 h et de 4 h. Cependant, la valeur de DEP était augmentée à 90 min pour le groupe de 16 h (P=0,0012), et à 30, 60, 90 et 120 min pour l’expérimentation de 4 h (P=0,0001).

Conclusion: L’administration d’atropine a un faible effet broncho-dilatateur en soirée, mais un effet plus important le matin. Les voies aériennes sont plus étroites le matin que le soir. Ce qui est inhibé par l’atropine. On retrouve ainsi, le matin, les valeurs du DEP observées en soirée.

References

  1. 1.
    Lichtor JL. Psychological preparation and preoperative medicationIn: Miller RD (Ed.). Anesthesia, 3rd ed. New York: Churchill Livingstone Inc., 1990: 895–928.Google Scholar
  2. 2.
    Dickstein J, Greenberg A, Kruger J, et al. PCO2 affects tracheal tone during apnea in anesthetized dogs. J Appl Physiol 1996; 81: 1184–9.PubMedGoogle Scholar
  3. 3.
    Kirvelä OA, Kanto JH. Clinical and metabolic responses to different types of premedication. Anesth Analg 1991; 73: 49–53.PubMedGoogle Scholar
  4. 4.
    Williams T, Brooks T, Ward C. The role of atropine premedication in fiberoptic bronchoscopy using intravenous midazolam sedation. Chest 1998; 113: 1394–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Jones GC, Drummond GB. Effect of atropine premedication on respiratory complications. (Letter) Br J Anaesth 1981; 53: 441.PubMedCrossRefGoogle Scholar
  6. 6.
    Hetzel MR, Clark TJH. Comparison of normal and asthmatic circadian rhythm in peak expiratory flow rate. Thorax 1980; 35: 732–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Troyanov S, Ghezzo H, Cartier A, Malo J-L. Comparison of circadian variations using FEV1 and peak expiratory flow rates among normal and asthmatic subjects. Thorax 1994; 49: 775–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Yokoyama A, Kohno N, Sakai K, Hirasawa Y, Kondo K, Hiwada K. Effect of pranlukast, a leukotrience receptor antagonist, in patients with severe asthma refractory to corticosteroids. J Asthma 1998; 35: 57–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Barnes PJ. Neural control of human airways in health and disease. Am Rev Respir Dis 1986; 134: 1289–314.PubMedGoogle Scholar
  10. 10.
    Levin DC, Little KS, Laughlin KR, et al. Addition of anticholinergic solution prolongs bronchodilator effect of beta 2 agonists in patients with chronic obstructive pulmonary disease. Am J Med 1996; 100: 40S-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Vaughan TR, Weber RW, Tipton WR, Nelson HS. Comparison of PEFR and FEV1 in patients varying degrees of airway obstruction. Effect of modest altitude. Chest 1989; 95: 558–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Diaz JE, Dubin R, Gaeta TJ, Pelczar P, Bradley K. Efficacy of atropine sulfate in combination with albuterol in the treatment for acute asthma. Acad Emerg Med 1997; 4: 107–13.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2001

Authors and Affiliations

  • Setsuo Furuta
    • 1
  • Seichi Tanigawa
    • 1
  • Hiroshi Ohmizo
    • 1
  • Hiroshi Iwama
    • 1
  1. 1.Department of AnesthesiologyCentral Aizu General HospitalAizuwakamatsu CityJapan

Personalised recommendations