Advertisement

Algunas aplicaciones de los criterios de espaciamiento optimo

  • Francisco Azorín Poch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografía

  1. Abramowitz, M., &Stagun, I. A. (editors) (1964):Handbook of mathematical functions. Nat. Bureau of Standards, N. Y.MATHGoogle Scholar
  2. Aghieser, N. I. (1959):Theory of approximation. Ungar, N. Y.Google Scholar
  3. Antle, C. E. (1962): “The uniqueness of the spacing of observations, etc.”.Ann. Math. Stat., vol. 33, pág. 81).CrossRefMathSciNetGoogle Scholar
  4. Box, G. E. P., &Draper, N. R. (1959): “A basis for the selection of a response surface design”.J. A. S. A., vol. 54, No. 287, pág. 622:Jour. Am: Stat. Assoc. MATHMathSciNetGoogle Scholar
  5. Cuthbert, D., andHeerema, N. (1950): “Designs of experiments for the most precise slope estimations, etc.”.J. A. S. A., vol. 45, pág. 546.MATHGoogle Scholar
  6. David, H. A., &Arens, B. E. (1959) “Optimal spacing in regression analysis”.Ann. Math.-Stat., vol. 30, pág. 1072.MATHCrossRefMathSciNetGoogle Scholar
  7. Elfing, G. (1952): “Optimum allocation in linear regression theory.Ann. Math.-Stat., vol. 23, fig. 233.Google Scholar
  8. Garza, A. De La (1954): “Spacing of Information in Polynominal Regression”.Ann. Math.-Stat., vol. 25.Google Scholar
  9. Gaylor, D. W., andSweeny, H. C. (1965): “Design for optimal prediction in simple linear regression”.J. A. S. A., vol. 60, pág. 205.MATHMathSciNetGoogle Scholar
  10. Graybill, F. A. (1961):An introduction to linear statistical models. McGraw-Hill Co., N. Y.MATHGoogle Scholar
  11. Guest, P. G. (1958): “The spacing of observations in polynomial regression”.Ann. Math.-Stat., vol. 29, pág. 296.MathSciNetGoogle Scholar
  12. Harris, W. A., andHelvig, T. N. (1966): “Applications of the pseudoinverse to modelling”.Techn., vol. 8, No. 2, pág. 351.MATHMathSciNetGoogle Scholar
  13. Hildebrand, F. B. (1956):Introduction to numerical analysis. McGraw-Hill Co., N. Y.MATHGoogle Scholar
  14. Hoel, P. G. (1965): “Minimax designs in two dimensional regression”.Ann. Math.-Stat., vol. 36, pág. 1092.Google Scholar
  15. Hoel, P. G. (1936): “A simple solution for optimal Chebyshev regression extrapolation”.Ann. Math.-Stat., vol. 37, pág. 720.CrossRefMathSciNetGoogle Scholar
  16. Hoel, P. G., &Levine, A. (1964): “Optimal spacing and weighting in polynomial prediction”.Ann. Math.-Stat., vol. 35, pág. 1553.MATHCrossRefMathSciNetGoogle Scholar
  17. Johnston, J. (1965):Econometric methods. McGraw-Hill, N. Y.Google Scholar
  18. Karlin &Studden (1966):Chebyshev System W. Applications in Analysis and Statistics. Intercience, N. Y.Google Scholar
  19. Kempthorne, O. (1952):The design and analysis of experiments. John Wiley, N. Y.MATHGoogle Scholar
  20. Kiefer, J., &Wolfowitz, J. (1959): “Optimum designs in regression problems”.Ann. Math.-Stat., vol. 30, pág. 271.MATHCrossRefMathSciNetGoogle Scholar
  21. Kiefer, J., &Wolfowitz, J. (1965): “Extrapolation designs”.Ann. Math.-Stat., vol. 40, pág. 1627.CrossRefMathSciNetGoogle Scholar
  22. Levine, A. (1966): “A Problem in Minimax Variance Polynomial Extrapolation”.Ann. Math.-Stat., vol. 37, pág. 898.MATHCrossRefGoogle Scholar
  23. Smith, K. (1918): “On the s. d. of adjusted and interpolated values, etc”.Biometrika, vol. 12, pág. 1.Google Scholar
  24. Wold, H., &Jureen, L. (1953):Demand Analysis. John Wiley, N. Y.MATHGoogle Scholar
  25. Wold, H., ed. (1964):Econometric Models Building. North Holland.Google Scholar

Copyright information

© Springer 1968

Authors and Affiliations

  • Francisco Azorín Poch

There are no affiliations available

Personalised recommendations