Advertisement

Autonomic circulatory and cerebrocortical responses during increasing depth of propofol sedation/hypnosis in humans

  • Gina Lafreniere
  • Brian Milne
  • Donald G. Brunet
  • Michael A. Adams
  • Joel L. Parlow
Reports Of Investigation

Abstract

Purpose: To describe the relative effects of graded central nervous system (CNS) depression, using increasing propofol infusion rates, on neurovegetative brainstem-mediated circulatory control mechanisms and higher cortical activity in healthy humans.

Methods: Propofol was administered using an infusion scheme designed to achieve three target blood concentrations in ten healthy volunteers. Blood propofol concentrations and sedation scores were determined at baseline, during the three propofol infusion levels, and 30 min into the recovery period. Electroencephalographic (EEG) power was measured in three frequency bands to quantify cortical activity, and autonomic heart rate control was quantified using spontaneous baroreflex assessment and power spectral analysis of pulse interval.

Results: Sedation scores dosely paralleled propofol blood concentrations (0, 0.53±0.34, 1.24±0.21, 3.11±0.80, and 0.96±0.42 µg·mL−1 at baseline, three infusion levels and recovery respectively), and all subjects were unconscious at the deepest level. Indices of autonomic heart rate control were decreased only at the deepest levels of CNS depression, while EEG effects were apparent at all propofol infusion rates. These EEG effects were frequency specific, with power in the beta band being affected at light levels of sedation, and alpha and delta power altered at deeper levels.

Conclusions: The results of this study support a relative preservation of neurovegetative circulatory control mechanisms during the early stages of CNS depression using gradually increasing rates of infusion of propofol. Indices of arculatory control did not reliably reflect depth of sedation.

Keywords

Heart Rate Variability Respiratory Sinus Arrhythmia Sedation Score Circulatory Control Infusion Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Objectif: Décrire les effets relatifs d’une dépression graduée du système nerveux central (SNC) sur les mécanismes d’origine centrale du contrôle neurovégétatif de la circulation, et l’activité corticale supérieure chez des humains sains, en utilisant des perfusions de propofol à vitesses croissantes.

Méthode: Le propofol a été administré, chez dix volontaires en santé, selon un schéma de perfusion conçu pour atteindre trois concentrations sanguines cibles. Les concentrations sanguines de propofol et les scores de sédation ont été déterminés au départ, pendant les trois régimes de perfusion de propofol et à 30 min pendant la récupération. La puissance électroencéphalographique (EEG) a été mesurée selon trois bandes fréquentielles pour quantifier l’activité corticale, et le contrôle autonome de la fréquence cardiaque a été mesuré à l’aide d’une évaluation bar oréflexe spontanée et de l’analyse spectrale de la puissance de l’intervalle pulsé.

Résultats: Les scores de sédation ont présenté un étroit parallélisme avec les concentrations sanguines de propofol (0; 0,53±0,34, 1,24±0,21; 3,11±0,80, et 0,96±0,42 µg·mL−1 au début, pendant les trois perfusions et la récupération, respectivement), et tous les sujets ont connu un profond sommeil. Les indices de contrôle autonome de la fréquence cardiaque ont diminué seulement au moment de la plus profonde dépression du SNC, tandis que les effets EEG ont été apparents pour toutes les vitesses de perfusion du propofol. Ces effets EEG différaient selon les fréquences, la puissance de la bande bêta étant affectée à de bas niveaux de sédation et les bandes alpha et delta étant modifiées à des niveaux plus profonds.

Conclusion: Les résultats de l’étude entretiennent une relative préservation des mécanismes de contrôle neurovégétatif de la circulation pendant les premiers stades de la dépression du SNC quand on utilise des vitesses de perfusion de propofol qui augmentent graduellement. Les indices de contrôle circulatoire ne reflètent pas fidèlement la profondeur de la sédation.

References

  1. 1.
    Franks NP, Lieb WR Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367: 607–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Kearse LA Jr,Rosow C, Zaslavsky A, Connors P, Dershwitz M, Denman W. Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis. Anesthesiology 1998; 88: 25–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Sneyd JR, Samra SK, Davidson B, Kishimoto T, Kadoya C, Domino EF. Electrophysiologic effects of propofol sedation. Anesth Analg 1994; 79: 1151–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Rocchiccioli C, Saad MAA, Elghozi J-L. Attenuation of the baroreceptor reflex by propofol anesthesia in the rat. J Cardiovasc Pharmacol 1989; 14: 631–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Cullen PM, Turtle M, Prys-Roberts C, Way WL, Dye J. Effect of propofol anesthesia on baroreflex activity in humans. Anesth Analg 1987; 66: 1115–20.PubMedGoogle Scholar
  6. 6.
    Kamijo Y, Goto H, Nakazawa K, Benson KT, Arakawa K. Arterial baroreflex attenuation during and after continuous propofol infusion. Can J Anaesth 1992; 39: 987–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Sellgren J, Ejnell H, Elam M, Pontén J, Wallin BG Sympathetic muscle nerve activity, peripheral blood flows, and baroreceptor reflexes in humans during propofol anesthesia and surgery. Anesthesiology 1994; 80: 534–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Robinson BJ, Ebert TJ, O’Brien TJ, Colinco MD, Muzi M. Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology 1997; 86: 64–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Krassioukov AV, Gelb AW, Weaver LC Action of propofol on central sympathetic mechanisms controlling blood pressure. Can J Anaesth 1993; 40: 761–9.PubMedGoogle Scholar
  10. 10.
    Imholz BPM, Settels JJ, van der Meiracker AH, Wesseling KH, Wieling W. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure. Cardiovasc Res 1990; 24: 214–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Parati G, Casadei R, Groppelli A, Di Rienzo M, Mancia G Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 1989; 13: 647–55.PubMedGoogle Scholar
  12. 12.
    White M, Kenny GNC Intravenous propofol anaesthesia using a computerised infusion system. Anaesthesia 1990; 45: 204–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Skipsey IG, Colvin JR, MacKenzie N, Kenny GNC Sedation with propofol during surgery under local blockade. Assessment of a target-controlled infusion system. Anaesthesia 1993; 48: 210–3.PubMedCrossRefGoogle Scholar
  14. 14.
    White PF. Propofol: pharmacokinetics and pharmacodynamics. Sem Anesth 1988; VII: 4–20.Google Scholar
  15. 15.
    Altmayer P, Büch U, Büch HP, Larsen R Rapid and sensitive pre-column extraction high-performance liquid chromatographic assay for propofol in biological fluids. J Chromatogr 1993; 612: 326–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Chernik DA, Gillings D, Laine H, et al. Validity and reliability of the Observer’s Assessment of Alertness/Sedation Scale: study with intravenous midazolam. J Clin Psychopharmacol 1990; 10: 244–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Bertinieri G, di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G A new approach to analysis of the arterial baroreflex. J Hypertension 1985; 3: S79-S81.Google Scholar
  18. 18.
    Blaber AP, Yamamoto Y, Hughson RL. Methodology of spontaneous baroreflex relationship assessed by surrogate data analysis. Am J Physiol 1995; 268: 1682–7.Google Scholar
  19. 19.
    Parlow JL, Viale J-P, Annat G, Hughson RL, Quintin L. Spontaneous cardiac baroreflex activity in humans. Comparison with drug-induced responses. Hypertension 1995; 25: 1058–68.PubMedGoogle Scholar
  20. 20.
    Yamamoto Y, Hughson RL. Coarse-graining spectral analysis: new method for studying heart rate variability. J Appl Physiol 1991; 71: 1143–50.PubMedGoogle Scholar
  21. 21.
    Smith I, Monk TG, White PF, Ding Y Propofol infusion during regional anesthesia: sedative, amnestic, and anxiolytic properties. Anesth Analg 1994; 79: 313–9.PubMedGoogle Scholar
  22. 22.
    Smith I, White PF, Nathanson M, Gouldson R Propofol. An update on its clinical use. Anesthesiology 1994; 81: 1005–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Dagnone AJ, Parlow JL. Effects of inhaled albuterol and ipratropium bromide on autonomic control of the cardiovascular system. Chest 1997; 111: 1514–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Dimier-David L, Billon N, Costagliola D, Jaillon P, Funck-Brentano C Reproducibility of non-invasive measurement and of short-term variability of blood pressure and heart rate in healthy volunteers. Br J Clin Pharmacol 1994; 38: 109–15.PubMedGoogle Scholar
  25. 25.
    Iellamo F, Legramante JM, Raimondi G, Castrucci F, Massaro M, Peruzzi G Evaluation of reproducibility of spontaneous baroreflex sensitivity at rest and during laboratory tests. J Hypertension 1996; 4: 1099–104.Google Scholar
  26. 26.
    Parlow JL, Bégou G, Sagnard P, et al. Cardiac baroreflex during the postoperative period in patients with hypertensive. Effect of clonidine. Anesthesiology 1999; 90: 681–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981; 213: 220–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Latson TW, McCarroll SM, Mirhej MS, Hyndman VA, Whitten CW, Lipton JM Effects of three anesthetic induction techniques on heart rate variability. J Clin Anesth 1992; 4: 265–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Pomeranz B, Macauley RJB, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248: H151-H153.PubMedGoogle Scholar
  30. 30.
    Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 1992; 76: 725–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Galletly DC, Corfiatis T, Westenberg AM, Robinson BJ. Heart rate periodicities during induction of propofol-nitrous oxide-isoflurane anaesthesia. Br J Anaesth 1992; 68: 360–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Howell SJ, Wanigasekera V, Young JD, Gavaghan D, Sear JW, Garrard CS. Effects of propofol and thiopentone, and benzodiazepine premedication on heart rate variability measured by spectral analysis. Br J Anaesth 1995; 74: 168–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang DY, Pomfrett CJD, Healy TEJ. Respiratory sinus arrhythmia: a new, objective sedation score. Br J Anaesth 1993; 71: 354–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Robinson BJ, Buyck HCE, Galletly DC Effect of propofol on heart rate, arterial pressure and digital plethysmograph variability. Br J Anaesth 1994; 73: 167–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Novak V, Novak P, De Champlain J, Le Blanc AR, Martin R, Nadeau R. Influence of respiration on heart rate and blood pressure fluctuations. J Appl Physiol 1993; 74: 617–26.PubMedGoogle Scholar
  36. 36.
    Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89: 980–1002.PubMedCrossRefGoogle Scholar
  37. 37.
    Kearse LA Jr,Manberg P, DeBros F, Chamoun N, Sinai V. Bispectral analysis of the electroencephalogram during induction of anesthesia may predict hemodynamic responses to laryngoscopy and intubation. Electroencephalogr Clin Neurophysiol 1994; 90: 194–200.PubMedCrossRefGoogle Scholar
  38. 38.
    Veselis RA, Reinsel RA, Wronski M, Marino P, Tong WP, Bedford RF. EEG and memory effects of low-dose infusions of propofol. Br J Anaesth 1992; 69: 246–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Seifert HA, Blouin RT, Conard PF, Gross JB. Sedative doses of propofol increase beta activity of the processed electroencephalogram. Anesth Analg 1993; 76: 976–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Veselis RA. The EEG as a monitor of sedation: encouraging progress. J Clin Anesth 1996; 8: S81-S87.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2000

Authors and Affiliations

  • Gina Lafreniere
    • 1
  • Brian Milne
    • 2
    • 3
  • Donald G. Brunet
    • 4
  • Michael A. Adams
    • 1
  • Joel L. Parlow
    • 2
    • 3
  1. 1.From the Department of AnesthesiologyQueen’s UniversityKingston
  2. 2.Department of PharmacologyQueen’s UniversityKingston
  3. 3.Department of MedicineQueen’s UniversityKingston
  4. 4.Department of AnesthesiologyKingston General HospitalKingstonCanada

Personalised recommendations