Advertisement

Canadian Journal of Anaesthesia

, Volume 50, Issue 7, pp 657–662 | Cite as

The infusion rate of most disposable, non-electric infusion pumps decreases under hypobaric conditions

  • Masahito Mizuuchi
  • Michiaki Yamakage
  • Sohshi Iwasaki
  • Akira Kimura
  • Akiyoshi Namiki
General Anesthesia

Abstract

Purpose

To examine the delivery rates of four disposable, nonelectric infusion pumps during hypobaric conditions.

Methods

Four models categorized by three different driving forces, one vacuum unit (Coopdech Syringector), one spring unit (Linear-fuser), and two elastomeric balloon-powered units (Multirate Infuser LV and Large DIB), were tested. Each infusion pump was placed in an airtight container, and the pressure in the container was decreased to 1,000, 900, and 800 hPa. The catheter tip of each pump was exposed either to atmospheric pressure (1,000 hPa) or to similar hypobaric conditions (800–1,000 hPa).

Results

Under normal atmospheric pressure, each pump showed an accurate delivery rate in the range of −2% to +8% of the set infusion rate (4.0–5.0 mL·hr−1). With the catheter tip exposed to atmospheric pressure, the infusion rate of each pump was reduced from 35% in the case of the Large DIB to 64% in the case of the Coopdech Syringector, depending on the magnitude of change in hypobaric pressure. When the pressure acting on the catheter tip was reduced to a level similar to that exerted on the pump body, infusion rate was reduced (by 19%–27%) in all three types of pump, and the Large DIB showed no significant difference in performance compared to normal atmospheric pressure.

Conclusion

The infusion rates of disposable infusion pumps are reduced under hypobaric conditions. Even though we still do not know how the epidural pressure changes under hypobaric conditions, clinicians should be aware that the infusion rate of disposable infusion pumps is decreased under hypobaric conditions.

Keywords

Infusion Rate Normal Atmospheric Pressure Infusion Pump Airtight Container Hyperbaric Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

La vitesse de perfusion de la plupart des pompes à perfusion non électriques jetables diminue dans des conditions hypobares

Résumé

Objectif

Vérifier les vitesses d’administration de quatre pompes à perfusion non électriques jetables utilisées dans des conditions hypobares.

Méthode

Nous avons testé quatre modèles classés selon trois différentes catégories d’éléments moteurs, un appareil à aspiration (Coopdech Syringector), un appareil à charnière (Linearfuser) et deux appareils élastomères à ballonnet d’entraînement (Multirate Infuser LV et Large DIB). Chaque pompe a été placée dans un contenant hermétique dont la pression interne a été abaissée à 1 000, 900 et 800 hPa. La pointe du cathéter de chacune des pompes a été exposée soit à la pression atmosphérique (1 000 hPa) soit à des conditions hypobares similaires (800– 1 000 hPa).

Résultats

Soumise à une pression atmosphérique normale, chaque pompe a affiché une vitesse d’administration précise allant de −2 % à +8 % de la vitesse de perfusion préalablement définie (4,0– 5,0 mL·hr− 1). Si la pointe du cathéter était exposée à la pression atmosphérique, la vitesse de perfusion de chaque pompe était réduite de 35 %, dans le cas du Large DIB,jusqu’à 64 %, pour le Coopdech Syringector, en fonction de l’importance du changement de pression hypobare. Si la pression sur la pointe du cathéter était réduite au niveau de celle qui était exercée sur le corps de la pompe, la vitesse de perfusion était réduite (de 19 % à 27 %) pour les trois types de pompes. La performance du Large DIB n’a pas présenté de différence significative, comparée à la performance sous pression atmosphérique normale.

Conclusion

Les vitesses de perfusion des pompes jetables sont réduites dans des conditions hypobares. Même si nous ne pouvons encore expliquer les changements de pression péridurale observés dans des conditions hypobares, il faut savoir que la vitesse de perfusion des pompes jetables diminue dans de telles conditions.

References

  1. 1.
    Cousins MJ, Mather LE. Intrathecal and epidural administration of opioids. Anesthesiology 1984; 61: 276–310.PubMedCrossRefGoogle Scholar
  2. 2.
    Hogan Q, Haddox JD, Abram S, Weissman D, Taylor ML, Tanjan N. Epidural opiates and local anesthetics for the management of cancer pain. Pain 1991; 46: 271–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Banks S, Pavy T. A portable, disposable device for patient-controlled epidural analgesia following caesarean section: evaluation by patients and nurses. Aust N Z J Obstet Gynaecol 2001; 41: 372–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Rawal N, Axelsson K, Hylander J, et al. Postoperative patient-controlled local anesthetic administration at home. Anesth Analg 1998; 86: 86–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Ilfeld BM, Morey TE, Enneking FK. The delivery rate accuracy of portable infusion pumps used for continuous regional analgesia. Anesth Analg 2002; 95: 1331–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Valente M, Aldrete JA. Comparison of accuracy and cost of disposable, nonmechanical pumps used for epidural infusions. Reg Anesth 1997; 22: 260–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Sánchez-Guijo JJ, Benavente MA, Crespo A. Failure of a patient-controlled analgesia pump in a hyperbaric environment. Anesthesiology 1999; 91: 1540–2.PubMedCrossRefGoogle Scholar
  8. 8.
    Lavon H, Shupak A, Tal D, et al. Performance of infusion pumps during hyperbaric conditions. Anesthesiology 2002; 96: 849–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Ballantyne JC, Carr DB, Berkey CS, et al. Comparative efficacy of epidural, subarachnoid, and intracerebroventricular opioids in patients with pain due to cancer. Reg Anesth 1996; 21: 542–6.PubMedGoogle Scholar
  10. 10.
    Wermeling DP, Foster TS, Rapp RP, Kenady DE. Evaluation of a disposable, nonelectronic, patient-controlled-analgesia device for postoperative pain. Clin Pham 1987; 6: 307–14.Google Scholar
  11. 11.
    Aldrete JA, Brown CA, Yarcho KL. Cervical radiculopathy treated by infusion of epidural analgesics in homebound patients. J Clin Anesth 1994; 6: 33–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomas PS, Gerson JI, Strong G. Analysis of human epidural pressures. Reg Anesth 1992; 17: 212–5.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2003

Authors and Affiliations

  • Masahito Mizuuchi
    • 1
  • Michiaki Yamakage
    • 1
  • Sohshi Iwasaki
    • 1
  • Akira Kimura
    • 1
  • Akiyoshi Namiki
    • 1
  1. 1.Department of AnesthesiologySapporo Medical University School of MedicineHokkaidoJapan

Personalised recommendations